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EDITOR'S MESSAGE

Greetings from the Executive Committee of the North Central Section of the Geological Society

of America! As geologists, we all recognize the great importance of field experiences. This

year's meeting includes a diverse and excellent set of field trips. Collectively, this year's field trips

visit a broad spectrum of the geologic features of Illinois and Missouri that range in age from

Precambrian to Quaternary. These trips present a number of new ideas and interpretations that

will broaden the perspectives of all field trip participants. Your participation, interaction, and
exchange of ideas with the field trip leaders are encouraged at all times

These trips are the culmination of the time and energy freely given by a number of individuals. I

would like to thank and recognize the field trip leaders for their hard work in planning the field trips

and preparing the individual field guides. I would also like to thank the technical reviewers at

Illinois State University and the Illinois State Geological Survey for their efforts. I appreciate the

efforts of Jon Goodwin and the publication staff at the Illinois State Geological Survey for their

substantial work in preparing this field guide. A special thanks goes out to the property owners

who have been most helpful in planning these trips.

I look forward to a successful set of field trips!

David H. Malone

Department of Geography-Geology

Illinois State University

Cover photos, clockwise from upper left: Rafters negotiating Wildcat Rapids; geologic map of the

northern part of Johnson Shut-Ins; exposed strata at the Jubilee Lodge stop; cobbly limestone

and chert overlying crudely stratified silt in the Mason Hollow Section.
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The St. Francois Mountains of Missouri:

Window into the Mesoproterozoic

James A. Walker, Northern Illinois University,

Vernon M. Brown, University of Toledo, Gary R. Lowell,

Southeast Missouri State University, and
Michael D. Stalllngs, University of Missouri

INTRODUCTION

The St. Francois Mountains, located in southeastern Missouri, are host to the only sizable expo-

sures of an extensive belt of Mesoproterozoic igneous rocks that conservatively stretches from

northwestern Texas to southern Michigan (fig. 1-1). Silicic igneous rocks appear to dominate the

entire belt; hence, it has often been referred to as the Granite-Rhyolite Terrane (Thomas et al.,

1984). More recently, the Granite-Rhyolite Terrane has been subdivided into two separate

Mesoproterozoic provinces by Van Schmus et al. (1993): (1) the ca. 1 ,470 Ma Eastern Granite-

Rhyolite Province and (2) the ca. 1,370 Ma Southern Granite-Rhyolite Province (fig. 1-1). The
tectonic setting of these vast granite-rhyolite provinces remains enigmatic (e.g., Bickford and

Anderson, 1993). Rhyolitic ash-flow tuffs and granites are the preponderant Mesoproterozoic

lithologies of the St. Francois Mountains (e.g., Bickford et al., 1981). In general, granite is the

dominant lithology of the northeastern portions of the St. Francis Mountains, and rhyolite is much
more abundant to the southwest (Sides et al., 1981). This skewed distribution has been attributed

to southwestward tilting and subsequent erosional beveling some time after the cessation of

magmatic activity (e.g., Sides et al., 1981).

Most of the granites and rhyolites of the St. Francois Mountains have yielded U-Pb zircon ages

of 1 ,470 ± 30 Ma; i.e., they are part of the Eastern Granite-Rhyolite Province (Van Schmus et

al., 1996). The coeval ages of many of the igneous rocks suggest that there was one main

magmatic pulse centered around 1,470 Ma. Brown (1983, 1989) provides geologic evidence

that this main magmatic pulse was initiated in the southern St. Francois Mountains. Other geologic

studies indicate that magmatism then became focused in the eastern St. Francois Mountains,

culminating with the formation of the Butler Hill Caldera (Sides et al., 1981 ; Lowell, 1991). Magmatic

activity then shifted to the west and again may have climaxed with caldera formation (Sides et

al., 1981). Sides et al. (1981) have dubbed this western caldera the Taum Sauk Caldera.

Two granite plutons in the western St. Francois Mountains, the Munger and Graniteville granites,

have rendered ages of ca. 1,370 Ma (Van Schmus et al., 1996). These plutons could therefore

represent isolated, outlying magmatism associated with the Southern Granite-Rhyolite Province

(Bickford and Anderson, 1993; Van Schmus et al., 1996), or alternatively, indicate that much of

the magmatic activity in the western St. Francois Mountains, including production of the hypothe-

sized Taum Sauk Caldera, is actually considerably younger than magmatism to the east and
southeast (Anderson et al., 1969).
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Although volumetrically subordinate,

mafic and intermediate igneous rocks

are present within the St. Francois

Mountains (Amos and Desborough,

1970; Sylvester, 1984; Pippin, 1996).

The mafic and intermediate igneous

rocks of the St. Francois Mountains

occur as hypabyssal dikes and sills,

small stocks, and lava flows (Amos
and Desborough, 1970; Berry and
Bickford, 1972; Sylvester, 1984;

Pippin, 1996). Bowring et al. (1992)

suggested that the mafic rocks fall

into two chronological groups: a

1 ,380-1 ,330 Ma group, which accom-
panied the youngest silicic magmatism,

and a post-siliceous, ca. 1 ,200 Ma
group. These groups have been re-

ferred to informally as the Silvermines

and Skrainka groups, respectively

(Sylvester, 1984; Pippin, 1996). Other

geochronological results for the mafic

rocks of the St. Francois Mountains

are consistent with this interpretation

(Honda et al., 1985; Ramo et al., 1994).

Nevertheless, there are good reasons

for believing that mafic magmas were

present during the entire magmatic
history of the St. Francois Mountains.

First, Van Schmus et al. (1996) have

recently obtained Sm-Nd isochron ages on mafic plutons in the subsurface of Missouri that

overlap those of main phase granites and rhyolites. Second, rare mafic lavas have been
found intercalated with main phase silicic volcanics (Satterfield, 1966; Brown, 1983; Pippin,

1996). Third, mafic enclaves and mafic lithics are common in main phase granites and rhyolitic

ash-flow tuffs, respectively (Sides, 1978; Nusbaum, 1980; Sides et al., 1981; Lowell and Young,

1999). In addition, Lowell and Young (1999) have demonstrated that most of the mafic enclaves in

one particular granite, the Silvermine Granite, although intermediate in composition, probably

originate through the hybridization of mafic and silicic magmas. Fourth, gravity and magnetic

anomaly data suggest that mafic plutons may be more abundant in the upper crust below the St.

Francois Mountains (Hildenbrand et al., 1996). Lastly, mantle-derived basaltic magmas likely

floored and provided heat to this large, caldera-producing silicic magmatic system throughout its

entire history (Hildreth, 1981; Kay et al., 1989, Bickford and Anderson, 1993).

Figure 1-1 . Major geologic features of the central Midcontinent

region (modified after Van Schmus et al., 1996). G = Grenville

front, OF = Ouachita front, MCR = Midcontinent rift, MGL =

Missouri gravity low, RR = Reelfoot rift, SFM = St. Francois

Mountains. Dashed line is inferred eastern limit of pre-1 ,600 Ma
continental crust as discussed by Van Schmus et al. (1996).

The Precambrian rocks of the St. Francois Mountains have been variably affected by alteration,

metasomatism, and mineralization (Bickford and Mose, 1975; Wenner and Taylor, 1976; Brown

et al., 1989; Lowell, 1991; Sutton and Maynard, 1996). Wenner and Taylor (1976) and Lowell (1991)

have suggested that hydrothermal alteration/K-metasomatism has been pervasive throughout the

region; Cullers et al. (1981) argued for more localized metasomatic alteration. The Precambrian

mineralization has produced magnetite-hematite-apatite ore deposits (e.g., Brown et al., 1989).



The Mesoproterozoic igneous rocks are in nonconformable contact with various overlying Upper

Cambrian marine sedimentary rocks. The oldest of these is the Lamotte Formation (Sandstone),

which has been described by Ojakangas (1963) and Houseknecht and Ethridge (1978). Above

the Lamotte is the Bonneterre Formation (Dolomite), which has been the focus of many studies

including those of Lyle (1977), Gregg (1985), Gregg and Shelton (1990), Tobin (1991), and

Sheltonetal. (1992).

The field trip has been designed in an attempt to provide an overview of the entire magmatic history

of the St. Francois Mountains in selected extended stops. Daily stops are shown in figure 1-2

along with outcrops of Mesoproterozoic rocks. Other interesting field stops for these rocks are

included in studies by Lowell (1975), Kisvarsanyi (1976), Biggs (1987), Brown et al. (1989), and

Kisvarsanyi and Hebrank (1993). Each of the field stops is described in the planned order of visit.

SITE DESCRIPTIONS

Stop 1-1: Graniteville Granite at the Missouri Red Quarry

Location Graniteville 7.5-minute Quadrangle (fig. 1-3). The quarry is on Iron County 96, 4 mi

north of its intersection with Missouri Highway 21 (note that the roads have changed in the cen-

tral and west-central portions of this area from their locations shown in the 1968 quadrangle

map. On this map, the quarry is directly off MO 21 north of Graniteville). Quarry entrance is on

the northern side of the road. The quarry is privately owned. You must get prior permission to visit.

Graniteville granite is also exposed in Elephant Rocks State Park, just southwest of the quarry, and

is accessible via MO 21

.

Outcrop Description The Missouri Red Quarry has excellent exposures of the Graniteville

Granite, which has a U-Pb zircon age of 1 ,358 ± 25 Ma (Van Schmus et al., 1 996). The Graniteville

may be a somewhat isolated outlier of the Southern Granite-Rhyolite Province (Van Schmus et

al., 1996) or it may signify that the western St. Francois Mountains were host to a second period

of significant silicic magmatism. Drill core information indicates that the Graniteville pluton

occupies an 1 1 km by 15 km fault-bounded block within the hypothesized Taum Sauk Caldera

(Kisvarsanyi, 1980; Sides et al., 1981). Hence, it is tempting to call the Graniteville the western

equivalent of the Butler Hill Granite. The Graniteville is a distinctive brick-red granite composed
of microcline, quartz, plagioclase, biotite, and muscovite (Sides et al., 1981; Nabelek and Russ-

Nabelek, 1 990; Stallings, 1 998). Accessory minerals include fluorite, cassiterite, magnetite, pyrite,

zircon, and apatite (Sides et al., 1981 ; Stallings, 1998). Stallings (1998) recognizes four textural

varieties of the Graniteville: (1) a coarse-grained red granite, (2) a coarse-grained gray granite,

(3) a fine-grained red granite, and (4) a fine-grained gray granite. Contacts between the textural

variants are typically gradational. However, dikes and stringers of red granite crosscut the gray

granites indicating a younger age for the red granites. Their red coloration is likely due to minute

amounts of hematite dispersed in microcline (Wenner and Taylor, 1976). Rapakivi texture occurs

within both fine-grained varieties of granite, but less commonly in the coarser grained types

(Stallings, 1998). Numerous mafic enclaves are present in the Graniteville Granite. The Graniteville

is a high-Si granite with many of the chemical characteristics of typical A-type granites (Stallings,

1998). The Graniteville is cut by numerous primary fractures striking northeast. These tension

fractures are filled by subsolidus pyrite and mica and are paralleled by late-stage pegmatites and

quartz veins (Stallings, 1998).
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Stop 1-2: Royal Gorge Rhyolite on
Russell Mountain (time permitting)

Location I ronton 7.5-minute Quadrangle

(fig. 1-4). From Arcadia, Missouri, take MO
72/21 south about 4 mi to intersection with

MO CC. Turn right on CC and travel west

1.5 mi. Pull off on left by the trail head.

Outcrop Description Exposed immedi-

ately southeast and farther along the trail is

the Royal Gorge Rhyolite (fig. 1-4) (Berry,

1976). This unit is believed to be part of the

relatively younger volcanic sequence in the

western St. Francois Mountains, stratigraph-

ically below the climactic ash flow in the

west, the Taum Sauk Rhyolite (Table 1-1;

Sides et al., 1981). Van Schmus et al. (1996)

reported a U-Pb zircon age of 1 ,503 ± 20 Ma
for the Royal Gorge Rhyolite. The Royal Fi9ure 1 "3 - Location of Stop 1-1.

Gorge Rhyolite is a red to maroon rhyolitic

lava flow having a fine-grained matrix of devitrified glass with about 5% quartz and alkali feld-

spar phenocrysts (Berry, 1970, 1976; Sides et al., 1981). The Royal Gorge Rhyolite ranges in

thickness from a few meters to more than 700 m (Berry, 1970, 1976).

At this stop, the Royal Gorge Rhyolite exhibits

arresting flow banding and flow folding. Flow

bands vary in thickness from less than a milli-

meter to a few centimeters (Berry, 1970). The
darker bands consist of devitrified glass with a

well-developed snowflake texture, and the

lighter bands consist of recrystallized pumi-

ceous material with pronounced secondary

crystallization of quartz, feldspar, fluorite, cal-

cite, and iron oxide (Berry, 1970). Individual

bands can be traced for more than 1 00 m on

Russell Mountain (Berry, 1970). According to

Berry (1970), flow banding and folding are only

characteristic of the upper portions of the Royal

Gorge Rhyolite in outcrops on Russell and
Taum Sauk Mountains. The lower portion of

the lava is said to be massive (Berry, 1970).

Massive lava can be viewed in Royal Gorge
(further south of the CC intersection along

MO 72/21 about 1 .4-1 .8 mi, fig. 1 -4).

Taum
Sauk ^
Mtrt, jT""-^^ . cc

1-2

Mum
Twain

National

Forest Royal
Gorge

L

Figure 1-4. Location of Stop 1-2.



Stop 2-1: Silvermine Granite at Tiemann Shut-In

Location Rhodes Mountain 7.5-minute Quadrangle (fig. 1-5). Take MO 72 west for approximately

7.5 mi from its intersection with U.S. 67 (or take MO 72 east about 9.9 mi from Arcadia, Missouri,

past Roselle) and turn south onto Millstream Gardens State Park road (unpaved). Bear left at

the first intersection to avoid the well-marked private road, bear right at the second intersection,

and then turn left at the third intersection continuing to the parking lot and pavilion. The park-

ing lot is about 1 .2 mi from MO 72. This stop is best when the river is low and kayakers are

scarce. Watch out for snakes.

Outcrop Description From the parking lot, follow the hiking trail east, crossing the covered

bridge. Turn right immediately after the bridge on the small trail leading to the river. The river

channel exposes magnificent swarms of granite-hosted, pillow-shaped enclaves that record

mingling and hybridization between silicic and mafic melts (Lowell and Young, 1999). The hybrid

enclaves constitute more than 50% of some outcrops. Numerous aplite dikes cut both granites

and enclaves. Mafic dikes can also be viewed at this stop.

The host rock is the Silvermine Granite, one of the post-collapse ring plutons of the Butler Hill

Caldera (Sides et al., 1981; Lowell, 1991). Van Schmus et al. (1996) gave a U-Pb zircon age of

1 ,484 ± 07 Ma for the Silvermine Granite. The dominant rock in this pluton is a white, medium-
grained granite composed of plagioclase, perthite, quartz, biotite, and amphibole. Accessory

phases are apatite, magnetite, zircon, and titanite. The pluton is roofed by a thin, enclave-free,

fine-grained granophyre that lacks titanite and ferromagnesian minerals (Scully, 1978; Bickford

etal., 1981; Sides etal., 1981; Lowell, 1991).

The enclaves are hosted by medium-grained Silvermine Granite and form a mesocratic-leucocratic

series corresponding to tonalite-granite that can be successfully modeled as hybrids of Silvermine

Granite and Silvermines group basalts (Lowell and Young, 1999). The enclaves are fine-grained,

mostly darker than their host, and chaotically mixed in terms of size, shape, and composition.

Most enclaves exhibit chilled margins with lobate crenulations convex toward the felsic host, but

some enclave margins are recrystallized and coarser than the interior. Margin texture commonly
changes from sharp-crenulate to diffuse-veined over a short distance, which may reflect rupture

of brittle, chilled rims of partially molten pillows and mingling between melts. Two types of light-

colored, felsic enclaves are recognized by Lowell and Young (1999): (1) those hosted by granite

are mottled pink-gray, fine-grained, and concentrically zoned and reach 30 cm in diameter; and

(2) those hosted by large, dark tonalitic pillows are pink, coarse-grained, and range up to 10 cm
in diameter. The latter may appear in close proximity to fine-grained enclaves of similar size and

shape that are more mafic than their host pillow. Back-veining of the pillow enclaves is common
and assumes a variety of forms depending upon the state of pillow solidification during injection.

Enclave mineralogy is similar to that of the granite host, but mineral proportions differ, especially

at the mafic end of the enclave spectrum. Notable features include radial clusters of fine-grained

acicular amphibole, rapakivi, and antirapakivi mantled feldspars, rare oscellar quartz, and abundant

(1%) acicular apatite with aspect ratios up to 70:1 . Varying amounts of coarse, granite-derived xeno-

crysts impart a porphyritic appearance and textural heterogeneity to the larger enclave pillows.

If xenocrysts are neglected, the enclaves constitute a gradational textural/modal series between

tonalite and granite. The tonalitic enclave texture is a plagioclase lath framework filled by inter-

stitial quartz and perthite that is accompanied by radial clusters of acicular amphibole (1-8 mm).



Amphibole content and grain size decrease as fel-

sic character increases, but the distinctive skeletal-

acicular-radial morphologies are retained in the

most felsic enclaves. See Lowell and Young (1999)

for further petrographic details, and for mineral

analyses, whole rock chemistry, and interpretation

of mingling phenomena.

The aplites are pink, fine-grained dikes up to 0.7 m
wide that fill vertical northeast- and northwest-

trending conjugate fractures. The aplites also exhibit

chilled margins and contain angular fragments of

host granite and enclave material. The aplites are

composed of quartz, alkali feldspar, and biotite with

minor apatite, zircon, epidote, and opaque phases.

For modal and chemical data on the aplites, see

Lowell and Young (1999).

Roselle

Figure 1-5. Location of Stop 2-1

,

The mafic dikes are black to greenish gray micro-

porphyritic basalts with chilled margins. They are

composed of plagioclase, clinopyroxene, and opaques and may contain up to 25% xenocrystic

quartz, alkali feldspar, and plagioclase (Lowell and Young, 1999). The presence of xenocrysts, the

lack of olivine, and various trace element characteristics place these dikes into the Silvermines

mafic group of Sylvester (1984). Again, for modal and chemical data, see Lowell and Young (1999).

Stop 2-2: Grassy Mountain Ignimbrite and Skrainka Basalts

Along Missouri Highway 72

Location Fredericktown 7.5-minute Quadrangle (fig. 1-6). Outcrops along MO 72, 1 .7 mi west

of intersection with U.S. 67. Pull well off the highway onto the shoulder of MO 72.

Outcrop Description Exposed on the north side of MO 72 is the Grassy Mountain Ignimbrite

cut by two Skrainka-group mafic dikes. These same Precambrian units are present on the south

side of MO 72 and are nonconformably overlain by two younger sedimentary units.

The Grassy Mountain Ignimbrite is the product of the climactic explosive eruption in the eastern

St. Francois Mountains (e.g., Sides et al., 1981). Its measured volume at present is 32 km 3

,

strongly suggesting that its eruption led to caldera formation (Sides et al., 1981). The hypothe-

sized location and evolution of this caldera, referred to as the Butler Hill Caldera, are discussed

in detail by Sides et al. (1981) and Lowell (1991). The Grassy Mountain Ignimbrite is a dark

maroon to black rhyolitic ash-flow tuff (Sides et al., 1981). Although it can look deceivingly phan-

eritic in hand specimen, the Grassy Mountain Ignimbrite is porphyritic with about 15-25%
phenocrysts of perthitic feldspar and quartz (Shuster, 1978; Sides et al., 1981). The matrix is

totally recrystallized to a granular to granoblastic aggregate of quartz and feldspar (Shuster, 1978;

Sides et al., 1981). Sides et al. (1981) suggest that the recrystallization was part of the primary

devitrification of this thick pyroclastic flow deposit (see Lofgren, 1971). Flattened pumice frag-

ments and lithic fragments are generally rare; the former is said to be more abundant in the



upper portions of the unit (Shuster, 1978).

Shuster (1978) has shown that the Grassy

Mountain is quite compositionally uniform,

showing no petrographic or chemical zonations.

It is a high-Si rhyolite (Bickford et al., 1981).

The dikes are chemically part of the Skrainka

group of mafic rocks; hence, they are believed

to post-date all of the silicic magmatism of

the region (Honda et al., 1985; Bowring et

al., 1992; Ramo et al., 1994). According to

Sylvester (1984), most of the Skrainka dikes

trend N30°E, distinct from the dominant strike

of the older Silvermines dikes. The Skrainka

dikes at this locality have about 7-8 wt% MgO
(Pippin, 1996). They are medium- to fine-

grained olivine diabases, containing more
plagioclase feldspar than clinopyroxene

(Sylvester, 1984; Pippin, 1996). The larger

dike is about 1 .3 m wide and the smaller one
Figure 1-6. Location of Stop 2-2.

to the west is about 0.4 m wide. Both dikes have very sharp contacts with the host Grassy Moun-
tain Ignimbrite. On the south side of the highway, the larger dike is extensively altered.

The oldest sedimentary unit has been described as a basal boulder conglomerate by Kisvarsanyi

and Hebrank (1987). The boulders in this unit are mostly of weathered Precambrian igneous

rocks, suggesting that this unit may be a Precambrian weathering surface (e.g., Sutton and
Maynard, 1996). Overlying the basal conglomerate is the Bonneterre Formation consisting of

coarse sandy dolomite and dolomite (Kisvarsanyi and Hebrank, 1987).

Stop 2-3: Butler Hill Granite Along U.S. Highway 67

Location Wachita Mountain 7.5-minute Quadrangle (fig. 1-7). Outcrop is along the west side of

U.S. 67, 10.3 mi north of intersection with MO 72. Pull off the highway as far as possible.

Outcrop Description Exposed at this outcrop is the Butler Hill Granite, aplite dikes, and the

nonconformity with the overlying Lamotte Formation. The Butler Hill Granite is thought to be the

solidified upper portion of the magma chamber that also produced the Grassy Mountain Ignimbrite

and the Butler Hill Caldera (Sides et al., 1981). Two samples of the Butler Hill Granite have yielded

U-Pb zircon ages of 1 ,465 ± 32 Ma and 1 ,480 ± 30 Ma (Van Schmus et al., 1996). The Butler

Hill Granite crops out in a wide area of the northeastern St. Francois Mountains (Sides et al., 1 981).

The granite intrudes Grassy Mountain Ignimbrite and rocks of the even older Lake Killarney

Formation on its western, southern, and eastern edges (Sides et al., 1981), indicating that the

granite was emplaced during the resurgence of the Butler Hill Caldera after eruption of the Grassy

Mountain Ignimbrite (Sides et al., 1981). The grain size of the granite decreases systematically

to the southwest, one of the strong indicators for post-magmatic southwestern tilting and erosional

leveling of the St. Francois Mountains (e.g., Sides et al., 1981). Perthite, quartz, biotite, and

plagioclase are the common minerals in the Butler Hill Granite (Blaxland, 1974; Sides et al., 1981

;

Nabelek and Russ-Nabelek, 1990). In places, biotite is largely altered to chlorite (Nabelek and



Russ-Nabelek, 1990). Amphibole and muscovite are rare,

and important accessory minerals include fluorite, apatite,

and zircon (Sides et al., 1981). At this stop, the Butler Hill

exhibits well-developed rapakivi texture with alkali feld-

spar ovoids as large as 3 cm in diameter mantled by

plagioclase (Lowell and Sides, 1 973; Hebrank and Kis-

varsanyi, 1976). The Butler Hill is a high-Si granite with

major element compositions similar to the Grassy Moun-

tain Ignimbrite (Bickford et al., 1981). The Butler Hill be-

comes progressively more altered toward the

nonconformity, where it is extensively altered (Blaxland,

1974). This paleoweathering surface and others like it in

the region have undergone a series of alteration events

(Duffin, 1989; Sutton and Maynard, 1996).

The aplite dikes are orange, fine-grained, equigranular

rocks composed largely of quartz and alkali feldspar.

Nabelekand Russ-Nabelek (1990) indicate that the Butler

Hill aplites are also distinguished by unevenly distributed

miarolitic cavities. Aplites are generally interpreted as

late-stage differentiates in this case of the Butler Hill

magmatic system (e.g., Nabelek and Russ-Nabelek, 1990).

Figure 1-7. Location of Stop 2-3.

At this outcrop, the Butler Hill Granite is nonconformably overlain by the Lamotte Formation. The
Lamotte Formation is dominated by quartz-cemented quartz arenite, but includes conglomerate,

arkose, and litharenite as well (Ojakangas, 1963; Houseknecht and Ethridge, 1978). Here it

exhibits both cross- and graded bedding.

Stop 2-4: Tile Red and Crane Pond Tuffs at Leatherwood Creek Shut-Ins

Location Des Arc Northeast 7.5-minute Quadrangle (fig. 1-8). Coming from the east, take U.S.

67 approximately 17 mi south of Fredericktown to junction with MO N. Follow N west about 5 mi

to its junction with MO C. Take C west about 2.8 mi and turn right onto Madison County 424
(unpaved). Coming from the west, take MO 49 to Annapolis, turn left onto MO C, and travel 9.2 mi

turning left onto Madison County 424. Follow Madison County 424 west about 2.2 mi to Leather-

wood Creek Shut-Ins. Note that 424 may be a challenge in bad weather and the Shut-Ins are on

private property. Permission from the owners must be secured before visiting this site. The shut-in

below the dam at Crane Lake, a few miles to the west, affords public access and exposures of

the same volcanic units.

Outcrop Description The Leatherwood Creek Shut-Ins area has excellent exposures of the

Tile Red Tuff (Weixelman, 1959), the Crane Pond Tuff (Brown, 1983, 1988), and a younger

volcanic breccia. The Tile Red Tuff is well exposed in the bed of Leatherwood Creek. The Crane

Pond Tuff is exposed on the hillside to the east of the shut-in, and the volcanic breccia crops out

on the hillside to the west (Brown, 1988).

All of these units are believed to underlie the Lake Killamey Formation, the oldest unit in the eastern

St. Francois Mountains (Brown, 1983). Hence, they may represent some of the earliest magmas
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Figure 1-8. Location of Stop 2-4.

extruded in the region (Brown, 1983). Both

ash-flow tuffs are exposed in a series of

five knobs trending generally east-west

across the southern part of the Des Arc

Northeast 7.5-minute Quadrangle (Brown,

1988). The Leatherwood Creek exposure

is the easternmost knob. Here, the Crane
Pond lies stratigraphically above the Tile

Red. In the four knobs to the west, this

stratigraphic order is reversed. At this out-

crop, Tile Red pyroclastics were depressed

and deformed by emplacement of the Crane
Pond, suggesting both units were produced

in a single eruption. Brown and Kumar
(1986) conclude that the two tuffs were
part of a zoned magma chamber, with the

Tile Red representing the more Si0
2
-rich,

crystal-poor, cap of the chamber.

The Tile Red is a tile red rhyolitic ash-flow tuff with about 3-4% phenocrysts of alkali feldspar,

plagioclase, and quartz. It has a maximum thickness of 18 m. It is densely welded and has a

well-developed basal lithophysal zone. At the Leatherwood Creek exposure, this basal zone
also has orbicular devitrification structures up to 20 cm in diameter. The groundmass of the tuff

is devitrified, but not recrystallized, and ghost glass shards are readily observable under the

microscope. The Crane Pond is a purple to red rhyolitic ash-flow tuff with about 15-16% pheno-

crysts of plagioclase, alkali feldspar, and quartz. Its maximum thickness is 50 m. Its matrix is

devitrified and recrystallized and locally exhibits a snowflake texture. Small, quartz-filled lenticular

lithophysae are present throughout the unit but are larger and more common near its base. The

volcanic breccia has clasts of both tuffs and other volcanics (Brown, 1983, 1988).

Stop 2-5: Rhyolitic Ash-Flow Tuffs and Basaltic Andesite Lava
at Marble Creek Campground (time permitting)

Location Des Arc Northeast 7.5-minute Quadrangle (fig. 1-9). On MO E, 9.9 mi southeast from

its intersection with MO 72/21 south of Arcadia, Missouri, turn left into the campground and use

the parking lot immediately to the right.

Outcrop Description Exposed along Marble Creek immediately to the east is the Lower

Campground Tuff of Brown (1983, 1988). Exposed along MO E west of the parking area and on

the knob south of E is the Upper Andesite of Brown (1983, 1988), also known as the Marble Creek

Andesite (Satterfield, 1966) and the Blue School Basalt (Weixelman, 1959). Overlying the Upper

Andesite on the summit of the knob are float blocks of another ash-flow tuff called the Upper

Campground Tuff (Brown, 1983, 1988).

These volcanics are again believed to underlie the Lake Killarney Formation, which caps Black

Mountain, visible to the northeast (Brown, 1983). They occupy a structural hinge zone that is

suggested to form the southern boundary of the Lake Killarney Caldera, which has been postulated
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to have formed during eruption of the Lake

Killamey Formation, prior to production of the

Butler Hill Caldera (Brown, 1983, 1989).

The Lower Campground Tuff is a maroon,

rhyolitic ash-flow tuff with about 10% pheno-

crysts of feldspar. It may reach 35 m in thick-

ness. Thin, stringer-like lenticular lithophysae

are locally present. The tuff's matrix is devitri-

fied and partially recrystallized with occasional

ghost glass shards observable under the

microscope. It has about 74 wt% Si0
2

. The

Upper Andesite is a black to dark green aphy-

ric to porphyritic lava with phenocrysts of

plagioclase. The groundmass is subophitic to

trachytic and composed of plagioclase, clino-

pyroxene, and opaques. The rock has about

52 wt% Si0
2
and 5 wt% MgO and hence is a

basic, or basaltic, andesite (Pippin, 1996).

The Upper Campground Tuff is a dark

maroon to bleached white rhyolitic pyroclastic

rock. Individual blocks can exhibit cross- or

graded bedding. Quartz and alkali feldspar

are its dominant minerals.

St.
.

Francis
River

Figure 1-9. Location of Stop 2-5.

Stop 3-1 : The Volcanic Stratigraphy at Johnson Shut-Ins

Location Johnson Shut-Ins 7.5-minute Quadrangle

(fig. 1-10). Turn south on MO N from MO 21 just east

of Graniteville. Continue on N south for 12.8 mi,

turning left into Johnson Shut-Ins State Park just

before the intersection with MO MM. Follow signs for

office/store, and park in the large lot below the ceme-
tery, a distance of about 0.8 mi from the park entrance.

Walk along the paved path and boardwalk to the first

scenic overlook. To see the entire section, continue

along the lower portion of the Shut-Ins trail about

0.8-1 .0 mi to the large bend in the river (where water

flow changes from southwest to southeast). Walk to

the river and follow it (where possible) back north to

the scenic overlook. If necessary, circle larger, cliff-

forming outcrops by returning back to the Shut-Ins

trail, backtracking, and looping back to the river. The
Cope Hollow Formation is only exposed on the east

side of the river, and some underlying units have better

exposures on this same side. During low water con-

ditions, the eastern side of the river can generally be
safely reached by crossing the rocks below the first

Monterey,

to Missouri

®

o 1 Johnson
£* Shut-Ins

State

Park

Figure 1-10. Location of Stop 3-1

.
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scenic overlook (i.e., the Upper Ash-Flow Tuff). However, these rocks are highly polished, so

cross them with caution. The east side of the river can also be accessed by bridge by following

the Taum Sauk and Ozark trails northeastward from the parking area. However, one must then

do a bit of trailblazing to the southeast to reach the Shut-Ins. During any trailblazing in the park,

one should be courteous to both fauna and flora, particularly snakes and poison ivy.

Outcrop Description Beautifully exposed along the East Fork of the Black River are 650 m of

volcanic rocks and volcaniclastics. This spectacular section is believed to be the youngest sequence
of volcanics exposed in the St. Francois Mountains (Table 1-1; Sides et al., 1981). The rocks dip

about 15°-20° to the north/northeast and strike approximately normal to the valley. These rocks

have been described in detail by Blades and Bickford (1976), Blades-Zeller (1980), Hebrank and
Kisvarsanyi (1987), and Pippin (1996). Here we provide only brief descriptions taken from these

sources. Relevant geologic maps and stratigraphic columns are shown in figures 1-11,1-12,

and 1-13.

The lowermost unit in the section is the Taum Sauk Rhyolite, the climactic ash-flow deposit in

the western St. Francois Mountains (e.g., Sides et al., 1981). It is a maroon ash-flow tuff with

approximately 30% alkali feldspar phenocrysts. Overlying the Taum Sauk Rhyolite is the Proffitt

Mountain Ignimbrite, a lavender ash-flow tuff with about 25% phenocrysts of alkali feldspar and
quartz. Above the Proffitt Mountain are a series of volcaniclastic units, collectively referred to as

Table 1-1: Partial stratigraphy of Volcanic Rocks in the St.

Francois Mountains from Sides et al. (1981) and Brown (1983).

Proposed Stratigraphy Thickness, m

Cope Hollow Formation 42

Johnson Shut-Ins rhyolite 55

Proffit Mountain Formation 138

Taum Sauk rhyolite >1,000

Royal Gorge rhyolite 0-700

Bell Mountain rhyolite 25

Wildcat Mountain rhyolite 90

Lindsey Mountain rhyolite 500-700

Ironton rhyolite 340

Buck Mountain Shut-Ins Formation 80-1,000

Pond Ridge rhyolite 130

Cedar Bluff rhyolite 580

Shepherd Mountain rhyolite 600

Unit 690 >610

Ironton Hollow rhyolite >130

Wolf Mountain ignimbrite 160

Tribby breccia 200

Iron Mountain Lake felsite 300

Grassy Mountain ignimbrite -1,000

Lake Killamey Formation >390

Upper Campground tuff ??

Marble Creek lavas ??

Lower Campground tuff 35

Crane Pond tuff/Tile Red tuff 60
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Volcanic and
Volcaniclastic Rocks

(All units are Precambrian)

i * t.

Cope Hollow Formation

Upper Johnson Shut-ins

Ash-Flow Tuff

Middle Volcaniclastic

Siltstone with local

Conglomerate

Lower Johnson Shut-ins

Ash-Flow Tuff

Upper Volcaniclastic

Tuffaceous Siltstone,

Gray to Buff

Middle Volcaniclastic

Tuffaceous Siltstone,

Reddish and Crossbedded

, Lower Volcaniclastic

J Conglomerate

Proffitt Mountain Ignimbrite

Taum Sauk Rhyolite

Intrusive Rocks

Munger Granite Porphyry

Figure 1-11. Geologic map and stratigraphy of the Johnson Shut-Ins area after Blades and Bickford

(1976) and Hebrank and Kisvarsanyi (1987).
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Cambrian Sedimentary Rocks

Munger Granite

"White Rhyolite", uppermost Rhyolite

Upper Cope Hollow Rhyolites

Cross-Laminated Volcaniclastics

Cope Hollow Basalts

Lower Cope Hollow Rhyolites

Contour Interval 20'

\\ Outcrops

© Horizontal Beds

2
y Strike and Dip

Figure 1-12. Geologic map of the northern part of Johnson Shut-

ins from Pippin (1986).

14



CO

Q)

CD

E
in
OJ

r r t r j'—r—r

—

r—r

—

r r—/' r j' /' /'—>
' >

The "White Rhyolite"

Unit G: Upper Cope Hollow Rhyolitic

Ash-Flow Tuffs. Severafash
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upper Unit F: Medium Ti02 Basalt

lower Unit F: Medium Ti02 Basalt

Unit E: Cross-Laminated Volcaniclastic

upper Unit D: Medium Ti02 Basalt

Cope Hollow Dike: High Ti02 Basalt

lower Unit D: Low Ti02 Basalt

UnitC: Rhyolitic Ash-Flow Tuff

Unit B: Cross-Laminated Volcaniclastic

Unit A: Flow-Banded Rhyolitic Lava

Figure 1-13. General stratigraphy of the Cope Hollow Formation from Pippin (1 986).
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the Lower Swimming-Hole Section by Blades and Bickford (1976) and Blades-Zeller (1980).

The lowermost unit is a distinctive conglomerate with clasts of ash-flow tuff. The two overlying

volcaniclastics are finer grained: a lower reddish siltsone and an upper gray to buff-colored silt-

stone. Overlying the volcaniclastics is the cliff-forming Lower Johnson Shut-Ins Ash-Flow Tuff.

This ash-flow deposit is 16-20 m thick, is generally brick red, and has distinctive zones of accre-

tionary lapilli and lithophysae (Blades-Zeller, 1980). Blades-Zeller (1980) also subdivided this ash

flow into two flow units; they were deposited by separate pyroclastic flows (e.g., Freundt and
Bursik, 1998), which cooled as a single entity. Another sequence of volcaniclastic rocks overlies

the Lower Ash-Flow Tuff. These have been lumped together as the Middle Volcaniclastic Unit

(Blades and Bickford, 1976; Blades-Zeller, 1980) and consist of a basal conglomerate and an

overlying laminated siltstone. Capping the sequence on the west side of the river is the Upper
Johnson Shut-Ins Ash-Flow Tuff. This pyroclastic flow deposit is about 17 m thick and may also

consist of two flow units that cooled as one (Blades-Zeller, 1980). It is dark gray and has

well-developed fiamme and lithophysae. Blades-Zeller (1980) also described a basal zone
containing accretionary lapilli.

Volcanic rocks above the Lower Ash-Flow Tuff are exposed on the hillsides on the east side of

the river, north of the scenic overlook (figs. 1-11 and 1-12). This section has been informally

called the Cope Hollow Formation by Hebrank and Kisvarsanyi (1987) and Pippin (1996). Pippin

(1996) has presented a revised stratigraphy for this formation (fig. 1-13). The contact between

the Upper Johnson Shut-Ins Ash-Flow Tuff and the basal unit of the Cope Hollow Formation

(Unit A) can be seen during times of low water in the eastern side of the river channel opposite

the scenic overlook. Pippin (1996) suggested that the basal unit is a rhyolitic lava flow. This unit,

however, bears a passing resemblance to underlying siltstones on the west side of the river.

This unit is overlain by a fine-grained cross-laminated volcaniclastic rock (siltstone?), which

Blades and Bickford (1976) called a water-laid tuff. Above this unit are a series of basaltic lavas,

separated by another volcaniclastic unit (Unit E) and cut by a fine-grained dike. The basalts

are chemically distinguishable (Pippin, 1996). They all belong to the Silvermines mafic group of

Sylvester (1984). The dike, however, has distinctly higher Ti0
2
and belongs to the Skrainka

mafic group (Sylvester, 1984). Above the basalts are a series of poorly exposed rhyolitic ash-flow

tuffs (Unit G) capped by a distinctive white to buff rhyolite whose matrix displays well-preserved

ghost shards. Cambrian sediments unconformably overlie the white rhyolite (Pippin, 1996).

The volcanic section in Johnson Shut-Ins is cut by a small pluton, the Munger Granite (figs. 1-1

1

and 1-12). Like the Graniteville granite, the Munger has yielded a substantially younger U-Pb

zircon age, 1 ,378 ± 06 Ma, than other dated igneous rocks in the St. Francois Mountains (Van

Schmus et al., 1996). The Munger Granite has a distinctive orange-buff color. It is porphyritic

with phenocrysts of quartz, perthite, and plagioclase (Sides et al., 1981). In places, the Munger

is extensively altered.
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Quaternary and Environmental Geology
of the St. Louis Metro East Area

David A. Grimley, Andrew C. Phillips, Leon R. Follmer,

and Hong Wang
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Illinois State University

INTRODUCTION

This field trip highlights some recently discovered sites in the St. Louis Metro East area (fig. 2-1),

particularly from the Jerseyville area southward to Alton, Collinsville, and Belleville, where much
new work has been done to map the surficial geology and for general research. Sites have been
chosen to illustrate representative or unusual aspects of local Quaternary deposits. Some of the

localities have been intensively studied (e.g., Keller Farm), whereas others are new (e.g., Dunn
Road Section) but equally important for tying together the regional geologic history of the area.

Most sites feature Wisconsinan loessal deposits and a variety of glacial deposits of the lllinoian

Stage. The character of the loess changes within the Metro East area in response to paleowind

direction, valley width, and valley orientation. The texture and composition of the till also varies,

reflecting glacial entrainment, substrate lithology, and ice flow direction. Several sites, many of

which are proximal to major river valleys, display thin flood beds or thicker lacustrine or alluvial

deposits related to much higher base levels and sediment loads in the American Bottoms during

the last two glaciations. We also discuss how knowledge of the surficial geology is a key to solv-

ing some of the pressing societal issues, such as soil erosion, groundwater supply and contami-

nation, mass wasting, resource availability, and wetland remediation. The thickness, distribution,

and character of the Quaternary deposits are extremely relevant to societal problems, and basic

research on their origin is also important for devising realistic solutions to those problems.

REGIONAL QUATERNARY GEOLOGY BACKGROUND

The St. Louis Metro East area (fig. 2-2A) provides an important setting for the study of Quaternary

geology because the region includes the confluence of three major rivers (Mississippi, Illinois,

and Missouri Rivers) and the margins of two major glaciations (lllinoian and pre-lllinoian). This

advantageous position allowed for a rich record of Quaternary deposits, contrasting in age,

lithology, source, and depositional environment. One of the unique aspects of the area is the

dominance of loessal and other silt deposits, which mainly originated from the broad Mississippi

and Missouri Valleys that drained the entire Upper Midwest and Great Plains during the last

several glaciations. The interspersal of loessal deposits among primary glacial deposits (till and
sorted sediments) on uplands allowed for excellent preservation and separation of many key litho-

and pedostratigraphic units. The combination of thick loess deposits with generally non-erosive

glacial deposition near the terminal margin of the Laurentide Ice Sheet was fortuitous, since this
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Figure 2-1. Location map of all field trip stops in

western Illinois. Stops 1 through 5 will be visited

on Day 1. Stops 6 through 9 will be visited on
Day 2. The dashed line follows the approximate

route of the field trip.

yf Normal
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Figure 2-2. A. Location of the St. Louis Metro East area relative to ice margins of the major glaciations

of the Quaternary. Subsurface ice margins are not shown. B. Regional map of the American Bottoms

and nearby vicinity. Rectangular boxes show the boundaries of 7.5-minute quadrangles that have been
published or have been mapped for surficial and bedrock geology.
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combination allowed for better preservation of easily recognizable and traceable layers in the

geologic record. Furthermore, the wide expanse of post-glacial floodplain in the American Bot-

toms area (fig. 2-2B) contains within it an abundance of archeological sites (Milner, 1998) and a

high-quality geologic record of the Midcontinent during the late Holocene. Thus, St. Louis

Metro East area Quaternary deposits may reveal clues as to the paleoclimate and paleoenvi-

ronment of the past 500,000 years.

Because of its societal planning needs as a growing metropolis, the St. Louis Metro East area

has been the focus of several 7.5-minute quadrangle geologic mapping projects by the Illinois

State Geological Survey (ISGS) in the last few years (partially funded by the U.S. Geological

Survey STATEMAP program). Although the geology and geomorphology of the region have

been examined by several previous researchers, many new findings were discovered during

the surficial geologic mapping in the area.

Background and Data Sources

American Bottoms The American Bottoms, an extensive floodplain of the Mississippi River

that contains many lakes and swamps, lies mainly on the Illinois side of the Mississippi River

(fig. 2-2B. Physiographic divisions in the American Bottoms have been noted by Yarborough

(1974); Hajic (1990, 1993) described landform sediment assemblages in the northern portion of

the American Bottoms and the lower Illinois Valley. The environmental setting and geomorphol-

ogy of the Mississippi River floodplain were discussed by Gladfelter (1979) and White et al.

(1984). Milner (1998) reconstructed some of the former paths of the Mississippi River in histori-

cal and late Holocene times. Abundant data on shallow materials (typically down to 5 to 15 ft

deep) are available from archeological projects along interstate routes (Kolb, 1997; Booth and

Koldehoff, 1999) and soil survey parent material data (Fehrenbacher and Downey, 1966; Wallace,

1978; Goddard and Sabata, 1982; Higgins, 1984) that reflect sediments to depths of about 3-5 ft.

The Illinois Department of Transportation, U.S. Army Corps of Engineers (Smith and Smith,

1984), and many consulting companies in the area (e.g., Philip Services Corp., Geotechnology

Inc., and Shively Geotechnical Inc.) have contributed to data from deep borings. Groundwater

resources and environmental contamination in the American Bottoms were investigated by

Bergstrom and Walker (1956) and Rehfeldt (1992).

Upland Areas Much of the early work in the area on the surficial geology of the uplands was
summarized on a regional scale by Willman and Frye (1970). The Wisconsinan loess stratigraphy

of the region was studied in detail by McKay (1977), with emphasis on the carbonate mineral-

ogy, and by Grimley (1996) and Grimley et al. (1998), with emphasis on magnetic properties

and silt mineralogy. McKay (1979b) also provided a stratigraphic framework for lllinoian and

pre-lllinoian deposits in the St. Louis Metro East area. In other thesis research projects, Bratton

(1971) studied selected Wisconsinan deposits in Madison and St. Clair Counties, and Odom (1958)

mapped the bedrock and surficial geology in a portion of the Cahokia Quadrangle.

A series of 1:1 25,000 maps for societal planning in St. Clair County was published by Jacobs (1 971 ).

Ongoing mapping of surficial geology and bedrock is occurring in the entire St. Louis Metro East

area (in Illinois) at a 1:24,000 scale (fig. 2-2B). To date, surficial geology maps are available for

the Grafton and Alton 7.5-minute Quadrangles (Grimley, 1999a, b). The stops on this field trip

will be primarily in the Alton, French Village, Cahokia, Columbia, and Waterloo 7.5-minute Quad-
rangles, all of which have been or are currently being mapped (fig. 2-3).
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Quaternary Deposits and Environments

The following discussion, organized from oldest to youngest units, is based on the literature as
well as recent and ongoing geologic mapping in the St. Louis Metro East area.

Residuum Silty clay loam to clay residuum (0 to 20 ft thick) is found lying on the bedrock in

many areas. Particularly common in unglaciated areas or areas of thin till, the residuum is generally

thickest above limestone bedrock and is mainly weathered bedrock with some admixed loessal

material. This type of material was informally classified by Nelson et al. (1991) in southern Illinois

(Pope County) as the Oak formation. Similar material in northwestern Illinois was interpreted to

have been weathered mainly during the Tertiary and early Quaternary (Willman et al., 1989).

Pre-Yarmouthian Deposits Till, alluvium, loess, and lacustrine sediments are common pre-

lllinoian deposits in southwestern Illinois. Pre-lllinoian deposits in the Metro East area are restricted

to present-day upland areas, but are preserved mainly in buried valleys east of the lllinoian ice

margin (e.g., fig. 2-3). As noted by recent mapping, the limit of pre-lllinoian glaciers is interpreted

as being similar to that delimited on a statewide scale by Willman and Frye (1970). Pre-lllinoian

deposits in Illinois may be correlative with oxygen isotope stage 12, a period of substantial

global ice volume about 450,000 years ago (Imbrie et al., 1984).

Pre-lllinoian till in this area, known as the Banner Formation (Willman and Frye, 1970), has not

been definitively found west of a curved line extending from Alton to Belleville to southeast of

Waterloo (fig. 2-2B). In the Alton and Elsah 7.5-minute Quadrangles, the Banner Formation is

patchy and tends to be preserved mainly in bedrock lowlands or depressions (Grimley, 1999b).

Although nonexistent over much of the landscape, the Banner Formation, where present, can

be thicker than younger lllinoian till deposits. In core OFL-1 of the O'Fallon Quadrangle (fig. 2-2B),

pre-lllinoian till is a silt loam diamicton up to about 30 ft thick that overlies lacustrine/loessal silts

(Harkness Silt), which are locally preserved beneath the pre-lllinoian till. In unoxidized, calcare-

ous till of core OFL-1 , the relative abundances of clay minerals average 25% expandables, 41%
illite, and 34% kaolinite plus chlorite. The comparatively high kaolinite-chlorite percentage and the

shape of the x-ray diffraction traces suggest a great degree of local bedrock influence, perhaps

by disaggregation of shale fragments into the clay fraction (H. D. Glass, ISGS, 1999, personal

communication). Grain size distribution of till in this core (<2-mm fraction) averages 20% sand,

55% silt, and 25% clay, which is fairly typical for pre-lllinoian till in the region (McKay, 1979b).

Pre-lllinoian ice in the St. Louis Metro East area likely originated from the east or northeast

(Willman and Frye, 1970). Despite its proximity, a western source of glacial ice is unlikely because

Calhoun County, Illinois, and western portions of St. Louis, Missouri, remained unglaciated

(fig. 2-2A). Scattered striations, found underneath probable pre-lllinoian till, indicated ice flow

from the northeast to east-northeast direction (Grimley, 1999b). The composition of the Banner

Formation in this area mainly reflects the local substrate, including highly erodible Pennsylvanian

bedrock, residuum, and proglacial silt, which were incorporated into the basal debris zone of

glaciers. Low percentages of expandable clay minerals in unaltered till in core OFL-1 also sug-

gest an eastern rather than a western source. Western source, pre-lllinoian tills in southeastern

Iowa and western Illinois (Wolf Creek Formation) are known to have expandable clay mineral

contents greater than 50% (Hallberg et al., 1980).
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Fine-grained alluvium was also deposited and preserved in some areas, primarily to the west of

the pre-lllinoian glacial limit, such as in the French Village Quadrangle (Grimley and McKay,

unpublished map). Sand and gravel of pre-lllinoian Stage, as yet, have not been found in the

Metro East area; perhaps these deposits were removed during stream incision of the succeed-

ing Yarmouthian Stage.

Yarmouthian Deposits and Soil Development Materials deposited during Yarmouthian time

include alluvial and lacustrine silt, silty clay, and clay. These interglacial deposits, classified as

the Lierle Clay Member of the Banner Formation (Willman and Frye, 1970), are typically leached

and altered by the strongly developed Yarmouth Geosol and can be up to about 20 ft thick in former

depressional or alluvial areas (fig. 2-3B). The Yarmouth Geosol developed during and subse-

quent to Lierle Clay deposition, yielding upwardly growing (cumulic) overthickened soil profiles.

The Yarmouthian Stage may have been of sufficient duration (about 240,000 years?) to have

included several warm and cold Milankovitch cycles, perhaps oxygen isotope stages 7 through

11 (Grimley, 1996). Ice advances possibly may have occurred in the northern Great Lakes such

that loess deposits may have accumulated in the Metro East area during parts of Yarmouthian

time. The evidence for this supposition is that the upper solum of the Yarmouth Geosol (developed

in Lierle Clay) is typically overthickened and gradational with the overlying lllinoian silts. Overthick-

ening and gradational contacts may have been the result of slow deposition of loess.

Data from marine oxygen isotope stages 1 1 and 5 (probably the warmest periods of the

Yarmouthian and Sangamonian Stages, respectively) suggest a climate fairly similar to that of

the Holocene (Droxler and Farrell, 2000; Hodell et al., 2000). Although the older interglacial

intervals may have been slightly warmer at times (Rousseau, 1999), the most significant differ-

ence among the interglacial periods was more likely one of duration rather than climate.

lllinoian Deposits lllinoian deposits are more widespread than the older Quaternary deposits.

Almost all of the Metro East area was glaciated during the lllinoian Stage (fig. 2-2), leaving behind

an assortment of intercalated till, lacustrine, loessal, and outwash deposits. These deposits were

likely laid down during oxygen isotope stage 6 (Curry and Pavich, 1996; Curry and Baker, 2000),

between about 190,000 and 130,000 years ago. Regional indications are that glacial ice advanced

from the Lake Michigan basin during the lllinoian Stage (Willman and Frye, 1970) and spread

almost completely across Illinois (fig. 2-3A). Striations and hairpin erosion marks on the limestone

bedrock at Lohr Quarry (northwest of Alton) confirm ice flow advance from the northeast to

east-northeast direction in the Alton area (Grimley, 1999b). In the Columbia and Dupo areas,

striations on sandstone and limestone are aligned more east-west and are attributed to ice flow

from the east (fig. 2-3B).

Several new findings in outcrops and cores indicate that early lllinoian loess and lacustrine

sediment (Petersburg Silt) are more extensive than previously thought (fig. 2-3B). Although

occurrences of waterlaid and windblown silts beneath lllinoian till were noted at such localities

as Hickman Creek (Odom ,1958), Powdermill Creek (McKay, 1979b), and a bluffside quarry near

Alton (Willman and Frye, 1958), the widespread occurrence of these deposits was not fully real-

ized. The Petersburg Silt, predominantly of lacustrine origin, can be up to 60 ft thick in some
buried valleys that are tributary to the Mississippi Valley (fig. 2-3B). Much of the Petersburg Silt,

which is generally crudely bedded and contains numerous Picea logs and fragments, was depos-

ited by backwaters in tributary valleys to the Mississippi River valley. Slow-moving backwaters

(slackwater lakes) originated as a result of rapid sedimentation and aggradation of the Mississippi
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River to a level above the tributary mouths. This aggradation likely resulted from sediment-laden

meltwater originating farther upstate in Illinois and in the Upper Mississippi River drainage area.

At several localities, the Petersburg Silt contains primarily an aquatic gastropod fauna, which

confirms a shallow water environmental interpretation. Some terrestrial shells, wood fragments,

and much loess were redeposited from upland areas into the shallow lakes. Climatic conditions

were likely fully glacial, based on the fossil evidence, the presence of dropstones with Canadian
shield lithologies, and the occurrence of lllinoian till immediately above the Petersburg Silt without

an intervening paleosol. In some areas at higher elevations (generally above 480 ft), the Peters-

burg Silt is loessal in origin or is a mixture of loessal and lacustrine silts. Amino acid (alloiso-

leucene/isoleucine) epimerization ratios from gastropods in the Petersburg Silt are characteristically

lllinoian; values generally have been between 0.15 and 0.26 at the Powdermill Creek Section

(Miller et al., 1994) and other sites in the Metro East area (see Oches, this volume).

An older silt deposit occurs discontinuously below the Petersburg Silt and above the Yarmouth
Geosol. This unnamed leached silt (less than 5 ft thick) has only been observed in a few localities

in Greene and Madison Counties (unpublished studies) but may be correlative to the Chinatown

Silt of McKay (1979b) at the Maryville Section. This silt was probably deposited during late Yar-

mouthian or very early lllinoian time. To avoid confusion, the Chinatown Silt name is not used

here because the Chinatown Silt at the Powdermill Creek Section west of Belleville (McKay, 1 979b;

Miller et al., 1994) is now thought to be equivalent to the Petersburg Silt.

lllinoian till and ice margin sediments (Glasford Formation) are common throughout the Metro

East vicinity. The texture of Glasford Formation diamicton ranges from loam to silt loam to silty

clay loam. Diamicton is generally sandier to the northeast, clayier to the southwest, and siltier to

the west. Thick residual clay soils on limestones in Monroe County probably contribute to a more

clay-rich till in this area. The increasing silt content to the west is undoubtedly a result of incorpora-

tion of loess and lacustrine silt by ice movement in that direction, as involutions of silt are

commonly seen in the field at the base of the Glasford till. Some laboratory data from the

Glasford till indicate a silty basal zone with greater amounts of expandable clay minerals.

Sand-filled channels are present in some places within the Glasford Formation. They occur

primarily in the upper portion of the unit, but locally they are distributed throughout (fig. 2-3B)

or occur as R-channels at the base of the unit (some of these sand bodies are present at the

Prairie du Pont Section). Large ridges, containing sand and gravel and diamicton (all Hagarstown

Member, Glasford Formation), occur in eastern Madison and St. Clair Counties. Based upon a

boring drilled in the O'Fallon Quadrangle near Shiloh (OFL-2; fig. 2-3B), the loess-covered ridges

are mainly composed of stratified sands (about 40 ft thick) that are intercalated with and underlain

by diamicton (greater than 50 ft thick). The longest part of the ridge at Shiloh trends west-southwest,

likely parallel to ice flow, based on a model for the formation of these ridges in Illinois (Jacobs

and Lineback, 1969). The formation of the Shiloh ridge may have been influenced by a bedrock

low that occurs under the ridge; any explanation for its origin must account for the inversion of

topography. The Hagarstown "ridged-drift" may have formed as a result of enhanced deposition

of mud flows and sands into a former low, in crevasses, or in channels beneath the ice (Jacobs

and Lineback, 1969), or may be related to ice-contact debris from an ice lobe reentrant.

Terraces of sand and gravel (Pearl Formation), overlain by loess, occur along some valleys.

Nonetheless, Pearl Formation sand and gravel (excluding the Hagarstown ridges) is less

common than would be expected for an area near the margin of a major glaciation. Much of the

outwash that was originally deposited must have been eroded during the succeeding interglacial
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(Sangamonian Stage) when large-scale stream incision occurred. Recently, sand and gravels

have been observed above and below lllinoian till proximal to Cahokia Creek Valley.

Loess and lacustrine silt (Teneriffe Silt) blanketed both Glasford and Pearl Formation deposits

following ice retreat to the northeast. These late-lllinoian silts are normally 3 to 10 ft thick and are

typically a yellow-brown to gray silt loam to silty clay loam with relatively scarce sand and pebbles.

These silts were commonly the parent material for the Sangamon Geosol and so are typically

weathered throughout their thickness.

Sangamonian Deposits and Soil Development The last interglacial warm period (known

as the Sangamonian Stage), although of considerable duration (Curry and Baker, 2000), largely

resulted in a record of soil formation (Sangamon Geosol) rather than extensive deposits. The
Sangamonian interglacial age lasted about 75,000 years (Curry and Baker, 2000), which was not

nearly as long as the Yarmouthian interglacial, based on physical, mineralogical, and elemental

indicators of soil development (Willman and Frye, 1970; Grimley, 1996). The soil solum of the

Sangamon Geosol is generally not as thick as the Yarmouth Geosol solum, yet is thicker than

the solum of modern soil. However, whereas the Yarmouth Geosol has been stripped or truncated

in many places by succeeding lllinoian glacial erosion, the Sangamon Geosol is typically well

preserved because of non-erosive burial by a blanket of Wisconsinan loess.

Where present, Sangamonian deposits are mainly alluvial, lacustrine, or accretionary. Primarily

silty clay loam to silty clay deposits, with sparse pebbles, these deposits have been referred to

as the Berry Clay Member of the Glasford Formation (Willman and Frye, 1970). The Berry Clay,

generally less than 10 ft thick, is mainly found in areas that were formerly flat-lying or depressional

areas on the landscape where slopewash was deposited and shallow lakes may have remained

during the interglacial interval. Because the Berry Clay and Teneriffe Silt were both altered by later

Sangamonian weathering, they are commonly difficult to differentiate.

Based on ostracode and pollen studies in south-central Illinois, climatic conditions during the

Sangamonian Stage were probably fairly similar to those of today, except that winters may have

been slightly warmer during portions of Sangamonian time (Curry and Baker, 2000).

Wisconsinan Deposits Although glacial ice did not reach southwestern Illinois during the last

glaciation, loess, outwash, dunes, and lake sediment resulted from glaciation in the Upper Missis-

sippi River drainage basin. Glacial ice in Illinois advanced to within about 80 miles of the St. Louis

Metro East area; however, most of the outwash in the American Bottoms and related loess

deposits were probably from Upper Mississippi and Missouri Valley sources, according to

mineralogical compositions (Glass etal., 1968; Grimley, 2000).

Outwash sand and gravel (Henry Formation) is up to 50 ft thick in the deepest portions of the

American Bottoms (Bergstrom and Walker, 1956; Grimley and McKay, unpublished map), where it

overlies bedrock (fig. 2-3A). The Henry Formation was deposited in a braided channel system as

the river aggraded in response to glaciation in the Upper Midwest. At two or three operating pits

in the American Bottoms, coarse sand with some gravel is currently being dredged, mainly for

construction use, from a depth of about 60 to 100 ft. lllinoian and pre-lllinoian outwash may exist

in the American Bottoms, but these deposits would be extremely difficult to distinguish from younger

outwash. The available evidence suggests that much of the older outwash has been scoured

away. In addition to being a local material resource, the Henry Formation is also a significant
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groundwater resource (Bergstrom and Walker, 1956). However, in recent years, extensive

contamination of this aquifer has been a significant problem (Rehfeldt,1992).

Loess deposits, deflated from the huge expanse of floodplain in the American Bottoms, are up
to 100 ft thick on some upland bluffs near Collinsville, but thin exponentially to about 20 ft thick

towards the eastern portion of the Metro East area (fig. 2-4; McKay, 1977). Loess deposits are

somewhat thinner near Alton and Columbia, ranging from 15 to 40 ft thick (Grimley,1999b),

because steep bedrock bluffs may have restricted loess deflation from the valley. Additionally,

valley orientation is parallel to the prevailing westerly winds near Alton, and a more narrow valley

exists near Columbia. Wisconsinan loess deposits have been classified as two major formations,

Peoria Silt and Roxana Silt (Willman and Frye, 1970). The older Roxana Silt, a pinkish brown to

pinkish gray silt loam, was deposited between about 55,000 and 28,000
14C yr B.P. (before pres-

ent) (McKay, 1977, 1979b; Hansel and Johnson, 1996). The Peoria Silt, the younger and normally

thicker unit (fig. 2-4), is a yellow-brown to gray silt loam that was deposited between about

25,000 and 12,000
14C yr B.P. (McKay, 1977, 1979b; Hansel and Johnson, 1996; Grimley et al.,

1998). Loess deposits are thick enough in the more northern Metro East areas (near Collinsville)

that the eastern bluffs bordering the American Bottoms are composed entirely of loess with till

and bedrock lying at depths below the level of the present floodplain. On upland areas, loess

deposits generally blanket the landscape because of their deposition by atmospheric settling.

Yet, loess deposits have commonly been eroded along steep ravines and valleys, thus exposing

the underlying till, lake deposits, residuum, or bedrock.

Lacustrine deposits are fairly commonly preserved in terraces of tributary creeks to the Mississippi

Valley. Fine sands, silts, and silty clays (Equality Formation) have been noted in tributary valleys,

such as those of Piasa Creek (Elsah 7.5-minute Quadrangle, unpublished) and Hickman Creek

(fig. 2-3A; Cahokia 7.5-minute Quadrangle, unpublished) within a couple of miles of their outlet

to the Mississippi Valley. Lake sediment was likely deposited by backwaters of the Mississippi

and Missouri Rivers that inundated tributary valleys, forming slackwater lakes during Mississippi

River aggradation when outwash and loess were also being deposited. The environment and level

of deposition of the Equality Formation were similar to that described for the lllinoian Petersburg

Silt. Post-glacial downcutting through the lake sediments has left behind terraces in some areas.

Terraces, capped by a few feet of loess and underlain by as much as 105 ft of slackwater sediment,

are common at about the 470- to 480-ft elevation. These terraces probably are correlative to the

Cuivre Level of the St. Charles Terrace Group in Missouri (Hajic et al.,1991). On Piasa Creek

terrace core ELS-1 , AMS radiocarbon ages of 29,600 ± 700
14C yr B.P. (A-001 1 ; shells), 42,000

± 3,100
14C yr B.P. (A-001 0; shells), and 43,772 ± 1 ,590

14C yr B.P. (A-0022; seeds) were deter-

mined from samples of pinkish brown silty clay at depths of 66 ft, 105 ft, and 107 ft, respectively.

The similarity in age and color of this lower Equality Formation to that of the Roxana Silt is attrib-

uted to synchronous deposition. Gastropods (e.g., Gyraulus, Amnicola, and Valvata tricarinata),

small bivalve shells, and ostracodes (Candona caudata, Candona rawsoni, and Limnocythere

herricki) in the lower Equality Formation are typical of slow-moving water. The ostracode assem-

blage (identified by B. B. Curry, ISGS) and plant macrofossils (amaranths and chenopods; identi-

fied by R. G. Baker, University of Iowa) are indicative of a cool climate that was as dry or drier

than today and similar to that in the northern Great Plains.

Holocene Deposits and Modern Soil Development Deposits of the current interglacial

period (the Holocene) include alluvial fans, point-bar deposits, and abandoned meander fills in the

American Bottoms as well as upland stream alluvium (fig. 2-3). All of these deposits are classi-

fied in the Cahokia Formation (Willman and Frye, 1970). Most small upland streams contain silty
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alluvium because of the large amount of incision and slumping of the thick silty loess deposits

that are easily eroded by water. Some of the larger river tributaries to the Mississippi River contain

more sandy alluvium. In lower reaches of the larger upland tributaries, the Cahokia Formation

commonly overlies Equality Formation lake deposits (fig. 2-3A).

In the American Bottoms, the Cahokia Formation consists of thick (up to 60 ft), well-sorted sandy

deposits of former point bars and thick (up to 60 ft) silty clay fills in abandoned river channels

and oxbow lakes (fig. 2-3A; White et al., 1984; Smith and Smith, 1984). These units overlie Henry

Formation sand and gravel (fig. 2-3A). Characteristics of surficial deposits in the American Bottoms

are somewhat predictable based on the geomorphology (Yarborough,1974; Hajic, 1993) data

from the U.S. Department of Agriculture soil survey maps (Goddard and Sabata, 1982; Wallace,

1 978) and remote sensing data.

On stable landscapes, modern (Holocene) soil profiles have developed in the Peoria Silt on

upland areas and in the Cahokia alluvium in the valleys and bottoms. Because of their younger

substrate, modern soils developed in the Cahokia alluvium are much less developed (lacking a

B horizon or having only a weak B horizon) than those developed into Peoria Silt on stable

uplands. Of course, soils in steeply sloping areas have weaker development because of erosional

processes and may contain thin layers (as much as 10 ft) of colluvium.

SITE DESCRIPTIONS:
DAY 1 (BLOOMINGTON-NORMAL TO ALTON)

Stop 1: Bloomington Area Surficial Geology (Skip Nelson)

Bloomington East 7.5-minute Quadrangle, Sec. 25, T23N, R2E, McLean County, Illinois.

The Holiday Inn and the town of Normal are located on the Normal Moraine. The Normal Moraine

is a belt about 5 mi wide consisting of low ridges trending N50°W, composed of the Batestown

Member of the Lemont Formation deposited during the Wisconsinan glacial maximum. The
unoxidized Batestown Member is a very stiff (unconfined compressive strength: Qu 200-400

kN/m), gray (7.5 YR 5/0), slightly pebbly silt loam (30% sand, 50% silt, 20% clay) diamicton with

a moisture content of 1 1 to 15%. It is interpreted to be mainly till. Borings for the Illinois State

University Arena indicate that the Batestown diamicton in the Normal Moraine is more than 80 ft

(25 m) thick, about twice the thickness of Batestown diamicton behind the end moraine. The pri-

mary topography has been modified by post-depositional kettle filling, loess deposition, and soil

development. Filled kettles are abundant on and behind the Normal Moraine. Kettle fill materials

(sandy silt and loam) generally have moisture contents of 14 to 24% and are soft to firm (Qu 40

to 100 kN/m).

In the Bloomington area, Batestown diamicton is underlain by the Tiskilwa Formation, which is

typically a stiff to hard (Qu 146-624 kN/m), slightly pinkish gray (2.5 PR 9/1), slightly pebbly loam

(35% sand, 45% silt, 20% clay) diamicton with a moisture content of 8 to 17%. The Tiskilwa For-

mation is interpreted to be mainly till. Borings indicate that the Tiskilwa diamicton contains shears

that are concave upward and to the north. At BroMen Hospital, Robein Member silt was repeated

(vertical separations of 10 m) in two borings. The unconfined strength of Tiskilwa diamicton is
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bimodal; the mean unconfined

strength is 270 kN/m (11-17%
moisture), but almost doubles to

490 kN/m (8-14% moisture) in

the 2 m adjacent to the shears.

Shears have been recognized in

borings and wells in the Tiskilwa

Formation from Bloomington east-

ward to LeRoy. The Bloomington

Moraine, composed of Tiskilwa

diamicton, is as much as 15 m
higher between Bloomington and
Moraine View State Park (just north

of LeRoy) than east of Moraine

View State Park or between
Bloomington and Peoria. Stop 1

,

shown in figure 2-3, will be a view

from the Bloomington Moraine

southeast of Bloomington-Normal.

Figure 2-4. Location of Stop 1 (Bloomington Moraine) in a portion

of the Bloomington East 7.5-minute Quadrangle.

Stop 2: Kane Quarry (Grimley, Phillips, and Follmer)

Boyer Creek 7.5-minute Quadrangle, SE, NW, SW Sec. 27.T9N, R12W, Greene County, Illinois.

Top elevation, 174 m (571 ft); bedrock elevation, ~ 530 ft.

Overview Kane Quarry, which contains exposures of glacial lacustrine sediment, diamicton,

sand-filled fractures, and loess, is located in western Illinois about 5 mi northwest of Jerseyville

and about 1 mi southeast of Macoupin Creek. The limestone quarry mines Burlington/Keokuk

Limestone and has an overburden thickness of about 40 ft. The described section is located on

a highwall in the northeastern portion of the quarry. This highwall was excavated into an upland

area of the lllinoian till plain. The top of this highwall is about 130 ft higher in elevation than

Macoupin Creek valley visible to the northwest (fig. 2-5).

From the exposures viewed in 1999 and 2000, the bedrock surface underlying the upland area on

the east side of the quarry appears to be relatively flat and occurs at an elevation of about 530

ft. Bedrock is also exposed up to about 530 ft along a roadcut about 0.5 mi to the southeast of the

studied highwall (fig. 2-5).

Quaternary deposits consist of thin residuum and loess near the base of the exposure, overlain

by lllinoian diamictons and proglacial lacustrine silt deposits, which in turn are overlain by Wis-

consinan loess (fig. 2-6). The presence of the Sangamon Geosol weathered into diamicton
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below the loess deposits

indicates an lllinoian Stage

for deposits immediately

below this level. The low-

est few feet of unlithified

deposits may be pre-

lllinoian or older.

Site Details The oldest

Quaternary deposit noted

at the described section is

the Petersburg Silt. How-
ever, about 100 ft north of

the described section, a

strongly developed inter-

glacial soil was observed

below the Petersburg Silt

in 1 999. This soil was inter-

preted to be the Yarmouth

Geosol and was developed

into loess or alluvium. This

soil merges into a residual

soil on the limestone bed-

rock.
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Figure 2-5. Location of Stop 2 (Kane Quarry) in a portion of the Boyer

Creek 7.5-minute Quadrangle.

The Petersburg Silt, up to 2 m thick, has the loose quality and massive character of a loess de-

posit rather than an alluvial silt, although an alluvial component may be present. The lower half

of the Petersburg Silt appears to contain a weakly developed interstadial soil. An increase in

dolomite content upward may indicate an increase in the deposition rate or better preservation

because of ensuing burial by glacial ice. Petersburg Silt was also found to have large magnetic

susceptibility values (60 x 10"5
to 100 x 10"5

[SI units]) (fig. 2-7), which are slightly greater than

typical eolian deposits in the region (Grimley, 1996). The large values for St. Petersburg Silt

may be due to its provenance or to neoformation of ultrafine ferrimagnetic minerals in paleosols.

Above the Petersburg Silt lies a dense silt loam diamicton unit that is correlated to the Glasford

Formation. The lack of weathering at the contact between these units indicates a conformable

sequence that was probably deposited during the glacial maximum of the lllinoian Stage. The
diamicton, albeit relatively thin (about 1 m thick), is dense, calcareous, and unoxidized and con-

tains erratic pebbles and spruce wood fragments. The diamicton is interpreted to be mostly

subglacial till and correlates with the time of maximum glacial advance of the Laurentide Ice Sheet

in the Midwest. Orientation of spruce wood in the till (Table 2-1) suggests an ice advance from

the east or east-northeast. This theory fits well with the regional picture (fig. 2-2B), as striations

in the Alton area, 15 miles to the southeast, are commonly N55°E. Magnetic susceptibility values

are about 10 x 10~5
to 15 x 10~5

(SI units), which is fairly typical for Lake Michigan Lobe tills

(Grimley, 2000).

Relatively thick silt deposits (about 5 m) above Glasford till record an unusual history and contain

perhaps the most interesting features at this site. The distortion of thin silty clay layers within a

primarily silty unit is the most unusual aspect of this deposit, stratigraphically known in Illinois
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Figure 2-6. Stratigraphic column summarizing findings at Kane Quarry. Described in August 2000 by

David A. Grimley and Andrew J. Stumpf. The section base is the approximate level of the limestone

bedrock surface.

as the Teneriffe Silt (Willman and Frye, 1970). The origin of these features may be due to some
combination of deformation and liquefaction processes. Some contacts of the thinner silty clay

layers appear to have a surface similar to a flame structure (mud wisp), which was later deformed,

perhaps from dewatering. Large paleoslump structures showing evidence of movement toward

the valley of Macoupin Creek were also observed within this lacustrine silt. Much of the Teneriffe

Silt at this site has a low clay content, seems to be rich in coarse silt, and is highly calcareous.

Coarse silt deposits, such as these with little cohesion from clay particles, are susceptible to

liquefaction. Low magnetic susceptibility values of 10 x 10"5
to 20 x 10~5

(SI units) are similar

to those of the underlying diamicton and suggest derivation by fluvial sorting of deposits from
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the glacial ice rather than having a large

eolian input, which would generally result

in higher susceptibility values.

Two sub-vertical fractures, up to several

inches wide, were infilled with sand in the

upper portion of Teneriffe Silt (fig. 2-6).

These sand-filled fractures may have

formed in a manner similar to that de-

scribed by Huddard and Bennett (2000)

for smaller sand-filled desiccation cracks.

Vertical cracks may have formed by repeti-

tive wetting and drying or freeze-thaw

periglacial processes. Evidence at this site

suggests that the cracks were filled in with

proglacial outwash, which occurs above

and lateral to the sand-filled fractures.

The Sangamon Geosol, a paleosol repre-

senting the last interglacial interval, occurs

in a silty clay loam to clay loam diamicton

up to 2 m thick. The origin of the diamicton

is interpreted to be a weathered outwash

bioturbated with loess. In some areas,

the sand and gravel thickens slightly so

that original bedding is apparent. Thicker

sand and gravel was noted to occur later-

ally near the top of one of the sand-filled

fractures. Large magnetic susceptibility

values in the Sangamon Geosol solum

(50 x 10"5
to 75 x 10

5
[SI units]) are inter-

preted to be a result of bacterially mediated

ferrimagnetic neoformation during soil

development.
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Figure 2-7. Magnetic susceptibility of Kane Quarry Sec-

tion; values are an average of three readings measured
at each depth.

The Sangamon Geosol is overlain by 2-3 m of Wisconsinan loess that has been leached of

carbonates. The contact of the weathered outwash with the loess above is gradational, such

that pebbles are sporadic through the lower portions of the Roxana Silt unit, likely due to biotur-

bation of the two depositional units. Delineation of the Peoria and Roxana Silts was impractical

at this site without laboratory data because of inaccessibility and because both units are leached

of carbonates and oxidized. Some of the upper Peoria Silt and the modern soil has been stripped by

quarry excavations.

Points to ponder

• What is the origin of the sand-filled fractures?

• By what mechanism did the lake form (proglacial, supraglacial, or other)?
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Table 2.1: Oriented wood fragments in Glasford Formation diamicton.

Length of wood
fragment (inches) Orientation

Plunge/

direction

14 N56°E 2°NE

3 N67°E not measured

3 S70°E 8°E

5 N66°E 15°NE

2 N55°E 6°NE

4 N77°E 12°NE

4 S79°E 9°E

7 S60°E 10°E

2 S64°E not measured

1 N77°E 5°NE

2 N66°E not measured

Stop 3: Mason Hollow Section (Grimley, Phillips, and Follmer)

Grafton 7.5-minute Quadrangle, NE, SW, NE, Sec. 9, T6N, R12W, Jersey County, Illinois. Top
elevation, -497 ft; bedrock elevation, ~ 485 ft.

Overview The Mason Hollow Section (field site GFT-4f of Grimley, 1999a) is located about 0.5 mi

north of Grafton and about 0.75 mi north of the confluence of the Illinois and Mississippi Rivers

(fig. 2-8). This site, a 12-ft high creek bank, was exposed in part from the anthropogenic effect of

constructing a culvert under Mason Hollow Road just upstream from the outcrop. The outcrop is

tens of feet in length and exposes silty and cobbly alluvium, underlain by fossiliferous fine-grained

sediment of the last glaciation (figs. 2-9 and 2-10). Bedrock occurs underneath this sequence at

about creek level and also outcrops extensively in the uplands adjacent to this narrow valley.

Site Details Crudely laminated silt (Equality Formation), about 3 ft thick, at the base of this out-

crop is calcareous and rich in fossil wood, seeds, needles, cones, and moss. This sediment, at

an elevation of about 485-490 ft, is envisioned to be near where Mason Hollow Creek entered

a slackwater lake of the Illinois and Mississippi Rivers (fig. 2-8). In this possibly deltaic setting,

alternating fluvial, palustrine, and lacustrine environments may have occurred in response to

variations in the level of the Illinois and Mississippi Rivers and lake level variations, stream

avulsions, and sedimentation rate changes. Cross-bedding near the base of this unit, abundant

spruce wood debris throughout, scour surfaces, and interspersed thin sand beds, particularly at

the top and bottom of this unit, suggest an alluvial environment during some phases of deposition.

This suggestion contrasts with the fine-grained nature of most of this unit and the occurrence of

ostracodes, which support periods of shallow water deposition. The sediment probably was pri-

marily derived from the Mason Hollow drainage basin. Woody debris and loessal deposits from

the uplands undoubtedly were washed into this steep-walled valley. However, there also could have

been some input from backwaters of the Mississippi and Illinois Rivers. Sieved samples contain

violet seeds, dwarf club moss, Selaginella selaginoides (spike moss), spruce cones, spruce
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needles, and sedge seeds, indi-

cating a boreal forest environment

(Richard G. Baker, personal com-

munication, University of Iowa,

1997). Sieved samples also con-

tain rare gastropods and ostra-

codes. Gastropods, identified by

Eric A. Oches (University of South

Florida), are small (<4 mm) and

include Amnicola (aquatic) and

Discus cronkhitei (terrestrial).

Ostracodes have an affinity to

Cypricercus, which is found in Illi-

nois today in springs. This simi-

larity suggests very shallow fresh

water with some spring discharge

likely existed here (B.B. Curry,

personal communication, 2001).

Fossil spruce wood (Picea) em-

bedded within this silt was dated

19,370 ± 200
14C yr B.P. (ISGS

3582), which is similar to ages

reported from Bellefontaine Quarry

(formerly known as Jamestown

Quarry) in Missouri about 10 mi

southeast of this section (Hajic et

al., 1991; Grimley etal., 1998). Radiocarbon ages on wood preserved in river-flooded sinkhole

fills at this quarry (also at about 490 ft elevation) indicate three flooding events at about 19,800,

18,600, and 16,000
14C yr B.P. These deposits have been correlated to other glacial flood clay

beds that are interbedded within loess deposits in the St. Louis area and occur at elevations

between 485 and 500 ft (Hajic et al., 1991 ; Grimley et al., 1998). Therefore, deposition at Mason
Hollow likely occurred during a phase of maximum aggradation of the Mississippi and Illinois

Rivers during the last glacial maximum, perhaps during the deposition of the lower two clay beds in

the region. Because the modern normal pool elevation of the Mississippi River is about 419 ft in

this area (Elsah 7.5-minute topographic map, unpublished), these deposits record a flood at

least 70 ft above the present river level and about 45 ft higher than the Great Flood of 1993

(Chrzastowski etal., 1994).

Cobbly, bouldery gravel, as much as 3.5 ft thick, sharply overlies the fine-grained Equality

Formation (figs. 2-9 and 2-10). The angular and slabby character of the clasts indicates proximal

deposition and records a drastic change in transportational energy. Deposition of these coarse

alluvial gravels could have occurred during cold climate conditions of the late Wisconsinan,

during which enhanced colluviation occurred along with some reworking by fluvial processes.

One scenario might have been that a rockfall occurred slightly upstream and the angular cobbles

were transported to this site during a storm event. Slope processes and river incision would

have been accelerated immediately after slackwater lake levels dropped. It is also possible,

however, that several thousand years elapsed before the alluvium was deposited. Dominantly

limestone and chert lithologies indicate a local source area. Rare, small erratic pebbles may

Figure 2-8. Location of Stop 3 (Mason Hollow Section) in a por-

tion of the Grafton 7.5-minute Quadrangle. Maximum height of

slackwater lakes during the peak of the last glaciation was about

485 ft. Areas up to 440 ft were flooded in 1 993.
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modern soil

elev. ~ 497 ft

Description Interpretation
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silt loam, 10YR4/2,

sparse sand and pebbles

weathered

alluvium

silty gravel, 10YR 4/3,

cherty, up to 5" gravel,
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occasional 3-4" silt beds

« - O-• <=>

Cahokia or

Henry Formation

<3

<C>-

.o.

C>-
.o,

C>- •

.G>.

C9.

<o.o,

c>-
.o,

«C5

C

c

c

cobbly, bouldery gravel,

with clay loam matrix

(10YR 4/4), >50 % gravel,

subangular to angular;

mainly white limestone with

some chert and rare erratics,

boulders up to 1
2", typically

3" gravel, imbricated with

upstream dip

alluvium,

high energy

Equality Formation -cr>
10->

spruce wood radiocarbon age
19,370 ±200 (ISGS-3582);

also contains violet seeds,

dwarf club moss, spike moss,

spruce needles, sedge seeds
— . C=3

12

silt loam, crudely laminated;

2.5Y 4/1-4/2; calcareous;

some oxidation in upper few-

inches; common spruce

wood; sandy zones near top

and bottom, some cross

bedding near base

lacustrine, palustrine

and

low gradient alluvial

sediment

Silurian bedrock
carbonate bedrock seen at

low creek stages; bedrock

surface varies ± 1 ft

Figure 2-9. Stratigraphic column summarizing findings at the Mason Hollow Section. This exposure,about

30 ft wide on the east side of creek just downstream from a culvert, was described in Februaryl 997 and

also in August 2000 by David Grimley, Andrew Phillips, Leon Follmer, and Andy Stumpf.

have originated from erosion of till or glacial outwash deposited in the drainage basin during

either the lllinoian or pre-lllinoian ages. However, because direct glacial deposits are not known

in this drainage area (Grimley, 1999a), an alternative possibility is that erratics were ice-rafted to

these elevations by peak glacial floods of the Illinois and Mississippi Rivers and later reworked

into these alluvial deposits. This idea could be tested by searching for erratics at elevations above

500 ft. This unit could be correlated to either the Henry Formation or Cahokia Formation, depend-

ing on a Wisconsinan or Holocene age.
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Figure 2-10. View of Mason Hollow Section showing cobbly limestone and chert gravel alluvium overlying

crudely stratified silt.

Another 3.5 ft of crudely bedded silty gravel alluvium occurs above the coarse alluvium (figs. 2-9

and 2-10). This sediment is not as cobbly as below and does not contain any boulders. A lower

content of limestone and higher content of chert are likely a result of postdepositional weather-

ing. Minor silt beds within this unit may record calmer periods of overbank deposition. This unit

is most likely Holocene in age and is correlated to a portion of the Cahokia Formation.

The uppermost 2 ft of silty alluvium is mainly redeposited loess with sparse reworked pebbles

(figs. 2-9 and 2-10). It is leached and weathered but does not contain a well-developed modern

soil. Thus, the age of this deposit is likely late Holocene or historical, perhaps representing sedi-

mentation during deforestation of agricultural lands in the northern portion of the Mason Hollow

drainage basin.

Flooding in the Grafton Area Severe flooding occurs periodically in the Grafton area.

During the flood of 1993 (Chrzastowski et al. 1994), the confluence of the Illinois and Mississippi

Rivers rose to an elevation of 442 ft, inundating much of downtown Grafton and leaving behind a

thin layer of clay on the floodplain west of downtown. A new community of homes, available to

residents of Grafton, has been constructed on uplands about 1 mi north of the town; however,

many homes and businesses remain in the floodplain. Structures at low elevations on the western

side of downtown Grafton near the mouth of Mason Hollow are especially vulnerable (fig. 2-8).

Points to ponder

• What environment does the Equality Formation represent?

• What mechanism caused the extreme change in depositional energy between the silt and cobbly

gravel?
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Stop 4: Piasa Creek Terrace (Grimley)

Elsah 7.5-minute Quadrangle, NW, NW, NE Sec. 26, T6N, R11W, Jersey County, Illinois. Top
elevation, -475 ft; bedrock, not reached at 366 ft.

Overview At Stop 4 (fig. 2-11), field trip participants can view the landscape and examine a

109-ft core (ELS-1) drilled into the Piasa Creek Terrace, on the grounds of Lockhaven Country

Club. Along the lower Piasa and Mill Creek valleys, terraces occur at an elevation of about the

470-490 ft, but these elevations appear to decrease to 460 ft a few miles upstream. These terraces,

capped by a few feet of loess, contain thick deposits of fine-grained lacustrine sediments (slack-

water lake deposits). These sediments are interpreted to have been deposited by the backwaters

of the Mississippi River that inundated these areas at the peak of the last glaciation. Sediments

(fine sand to silty clay) are more than 109 ft thick at this site (fig. 2-12) near the confluence with

the Mississippi Valley, but thin to less than 10 ft upstream a few miles. Based on their elevation,

loess cover, and sediment record, these terraces are probably correlative to the Cuivre level of

the St. Charles Terrace Group, noted by Hajic et al. (1991) in the St. Louis area. Mississippi River

downcutting, which formed this terrace level, is estimated have occurred between about 17 ka

and 15.5 ka; thus, sediments in these terraces are presumably this age or older (Hajic et al., 1991).

These lacustrine sediments are correlated to the Equality Formation and occur in much of the

St. Louis area either in terraces or below post-glacial Cahokia alluvium at elevations below 490 ft

(Goodfield, 1965; Hajic et al., 1991). Additionally, waterlain clay beds commonly interfinger with

loess deposits in the region at elevations between 485 and 505 ft and have been radiocarbon

dated between 20,000 and 16,000
14C yr B.P. (Hajic et al., 1991; Grimley et al., 1998).

Core ELS-1 In core ELS-1 (fig. 2-12), drilled on undisturbed ground in the heart of the Piasa

Creek Terrace (fig. 2-11), about 60 ft of yellow-brown to gray silt, clay, and fine sand (upper

Equality Formation), capped by 5 ft of weathered loess (Peoria Silt), was found to overlie 44 ft

of red-brown to pink to grey silty clay (lower Equality Formation). The lower unit contains scattered

gastropods (snails) and is particularly fossiliferous near the core bottom (105-108 ft). The
accelerator mass spectrometer (AMS) radiocarbon ages of 29,600 ± 700 [A-001 1 ; shells],

42,000 ± 3,100 [A-001 0; shells], and 43,772 ± 1590 [A-0022; 5
13C -26.6; seeds] were deter-

mined at depths of 66, 105, and 107 ft, respectively. These ages essentially bracket deposition

of the lower Equality Formation between 45,000 and 29,000
14C yr B.P. This time interval is

similar to that for deposition of a pinkish brown loess in the St. Louis area (Roxana Silt), which

occurred between about 55,000 and 27,000
14C yr B.P. (McKay, 1979b; Hansel and Johnson,

1996). This synchroneity and the similarity in color suggest that the lower Equality Formation

includes a significant amount of redeposited Roxana Silt. Further evidence is that lower Equality

sediments have a greater proportion of kaolinite and/or chlorite in the clay fraction and a smaller

diffraction intensity ratio than do upper Equality sediments (Table 2-2). These differences are

analogous to compositional differences between the Roxana and Peoria Silts (Frye et al., 1962;

Grimley etal., 1998).

Abundant fossils within the lower Equality Formation at the depth of 105-108 ft have revealed

significant information concerning the climatic and environmental conditions of the area during the

middle Wisconsinan. Gastropod varieties include several aquatic genera and species {Gyraulus,

Amnicola, and Valvata tricarinata) that typically live in slow-moving water. Small (2.5-mm) bivalve

shells were also present. Ostracodes, examined by B.B. Curry (ISGS), include abundant Candona
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caudata and Candona rawsoni and

uncommon Limnocythere herricki.

This assemblage supports the

sedimentological and gastropod

evidence of slow-moving or stand-

ing water. This ostracode assem-

blage is also indicative of a climate

that was as dry or drier than today,

such as that in northwestern Iowa,

the Dakotas, or the Canadian prai-

ries (B.B. Curry, personal communi-

cation, 1999). Plant macrofossils,

examined by R.G. Baker (Univer-

sity of Iowa), include common
chenopods and amaranths (these

prairie taxa are herbs that grow on

floodplains) and one poorly pre-

served spruce needle. These taxa

include prairie taxa, some of which

occur in the northern Great Plains

today. Ostracode and macrofossil

assemblages for this zone are simi-

lar to those found in pollen zone 5

of Raymond Basin, about 40 miles

to the northeast in Montgomery
County, Illinois (Curry and Baker, 2000). The overall environmental interpretation for this basal

zone of the lower Equality Formation is a slightly cooler and drier climate than at present. An
aggrading Mississippi River caused a lake to form in Piasa Creek valley into which loess and

other sediment that eroded from the uplands was periodically washed and deposited.

Note on the Great Flood of 1993 The "Great Flood" of the Mississippi River during 1993

greatly affected this region (Chrzastowski et al., 1994). In the area near Piasa Terrace, floods

reached an elevation of about 442 ft (more than 30 ft above normal levels), thus surrounding the

Lockhaven Country Club (fig. 2-11). According to Steve Velsor, of the Lockhaven Country Club

and resident on the club grounds, he and his family had to climb over the bluffs in order to get

to a vehicle and a road that was passable along Route 3. Although the 480-ft terraces were not

flooded themselves, most of the lower Piasa Creek floodplain and the roads alongside it were
inundated.

Points to ponder

• What was the relative contribution of the Mississippi River versus tributary sources to the Equality

Formation?

• What was a typical water depth of the lake?

Figure 2-11. Piasa Terrace location,

ft were flooded in 1993.

Elevations up to about 440

41
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Description

silt loam to silty clay loam; mainly

10YR4/4

very fine sand to fine sand, some
silt and clay; moderately sorted,

10YR 4/4 (upper) to 1Y 5/4 to

2.5Y 4.5/3 (lower)

Interpretation

weathered

loessial

alluvial

and

lacustrine

silt loam to silty clay loam to silty

clay; stratified; some clay films

and granular structure in the

upper 2 feet; 5JYJ5/2

silt, very fine sand, and fine

sand; weakly laminated;

moderately well sorted

2.5Y 5/2-5/4; calcareous

fine sand, very fine sand and silt,

laminated, with some medium
sand and silty clay loam; 2.5Y
6/2-5/4

silt, with some very fine sand

and fine sand; laminated; less

oxidized 2.5Y 4/2 -5Y 5/1 ; some
organic-rich layers, moderately

calcareous; some small gastro-

pods near base

silt to fine sand; 10YR 5/2 to

7/5YR 4/2; some krotovina, clay

films; Lymnae or

A

m n ico la shells

silty clay loam to silty clay, some
1 -2" fine sand beds near base;

laminated; 7. 5YR4/3-4/1 some
1 0YR4/1 ; calcareous; sparse

shell fragments

medium to coarse sand, well-

sorted,

silty clay, silty clay loam, and silt

loam, laminated, some thin beds

of very fine sand; 7.5YR4/2

(reddish) to 2.5Y4/1 (gray) beds

are interbedded, with the gray

more dolomitic than the red;

occasional wood and shell

fragments

"sandy loam to silty clay, sparse

pebbles; poorly sorted; 10YR 4/1-

4/2: fossiliferous

lacustrine

alluvial

and

lacustrine

alluvial

and

lacustrine

lacustrine

and

palustrine

lacustrine

lacustrine

alluvial

lacustrine

lacustrine

110
silty clay to clay, laminated, some
sandy loam; 10YR 4/1 to 7.5YR

4/2; fossiliferous

lacustrine

Figure 2-12. Stratigraphic column summarizing findings in the Piasa Terrace Core (ELS-1). This core was
drilled by Meyer Drilling on the grounds of Lockhaven Country Club on the flat top of terrace in March

1998. Described by David Grimley and Christine Wiscombe.
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Table 2-2: Clay mineralogy results from core ELS-1 (courtesy of H.D. Glass).

Sample
depth Clay mineralogy

1

(approx. ft) Formation Exp. lllite K + C D.I. ratio
2

36 Upper Equality 78 14 7 1.32

66 Lower Equality 55 28 16 1.16

71 Lower Equality 59 25 15 1.10

90 Lower Equality 61 22 16 0.91

105 Lower Equality 46 31 23 0.89

Estimated percentage of clay minerals of total clay minerals in the <2-,um fraction:

expandables (Exp.), illite, and kaolinite plus chlorite (K + C).

Effraction intensity ratio.

Stop 5: Lohr Quarry (Grimley and Phillips)

Alton 7.5-minute Quadrangle SE, Sec. 5, T6N, R10W, Madison County, Illinois. Surface eleva-

tion, ~ 538 ft; bedrock, - 51 1 ft.

Overview Lohr Quarry (field site ALT 12f of Grimley, 1999b), located about 7 mi northwest of

Alton near Little Piasa Creek (fig. 2-13), provides an excellent example of the typical surficial

(Quaternary) deposits found in the Alton area. The exposures of overburden on the highwalls

reveal about 11 ft of Wisconsinan loess, underlain by lllinoian glacial deposits and patchy pre-

lllinoian deposits (fig. 2-14). Striations are often visible on the bedrock surface.

Site Details Two Wisconsinan loesses are present, both of which were deposited by periodic

dust storms that deflated sediment from the Mississippi and Illinois River valleys. Peoria Silt, the

upper yellow-brown loess, contains the modern soil in its upper portion. Roxana Silt, the lower

loess, is pinkish brown, primarily because it contains more reddish sediment that was ultimately

derived from the Lake Superior region (Grimley, 2000).

An interglacial soil (Sangamon Geosol) separates Wisconsinan loess deposits from lllinoian till.

This paleosol formed during a period of warm interglacial conditions, similar to those of today

(Curry and Baker, 2000). Along this outcrop, the Sangamon Geosol is reddish brown with gray

mottles, indicating moderate drainage conditions during the Sangamonian. The paleosol also

has well developed soil structure, particularly in its Bt horizon. The upper solum was developed
into a thin deposit of late lllinoian loess (Teneriffe Silt).

lllinoian glacial materials include subglacial and supraglacial deposits, sands in glaciofluvial

channels and beds, and colluvium. Interbedded sand and silt deposits, either supraglacial or

proglacial, are as much as several feet thick in the northwestern corner of the highwall and
overlie dense pebbly loam diamicton, interpreted as subglacial till. Grain size data (<2 mm) from

two samples of subglacial till average 35% sand, 41% silt, and 24% clay (Table 2-3). Clay mineral

data (<2 //m) average 28% expandables, 57% illite, and 15% kaolinite plus chlorite. These data

are similar to those for lllinoian till in the region, such as the Fort Russell Member of the Glasford
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Formation at the Paddock Creek Section about
1 5 mi to the east-southeast (Table 2-3; McKay,
1979b). Some sandy channel fills are also found
within the subglacial till. One extensive sand layer

(about 1-4 ft in thickness) was traced for a distance

of more than 200 ft within the diamicton unit along

the west highwall of the quarry in 1999 and 2000.

Over most of the quarry exposure, the lllinoian till

rests directly on fractured limestone or thin (eroded)

bedrock residuum. Recent excavations (November
2000) have revealed many fractures in the lime-

stone bedrock filled with Glasford till to a depth of

2 ft or more. Commonly these fills have caused
shearing of red clay residuum on the sides of the

fractures. The fills are interpreted to have been
injected into the fractures by the force of overlying

glacial ice.
Figure 2-13. Location of Lohr Quarry in a portion

of the Alton 7.5-minute Quadrangle.
Although pre-lllinoian till was not present at the

measured section (fig. 2-14), an older brown silty clay loam diamicton is preserved in the north

wall of the quarry, underneath the lllinoian till in a paleodepression on the bedrock surface.

This oxidized and calcareous diamicton, interpreted as glacial till, is only about 5 ft thick. However,

since the Glasford Formation is thinner over this area, the depth from Sangamon Geosol surface to

bedrock is approximately 17 ft in most of the quarry. Except for the effects of oxidation, little

evidence of an interglacial soil (Yarmouth Geosol) is present between the pre-lllinoian and lllinoian

tills. However, we infer that considerable erosion occurred as a result of the subsequent advance

of lllinoian ice because the color, texture, and mineralogy of the till compare well with regional

observations of pre-lllinoian tills where a paleosol is present in the top of the pre-lllinoian diamicton

(McKay, 1979b). Data on average grain size (<2 mm) of 22% sand, 45% silt, and 33% clay

(Table 2-3) indicate less sand and more clay in this till unit than in the lllinoian till above, a

noticeable difference in the field. Average clay mineralogy results (<2 //m) of 36% expandables,

45% illite, and 19% kaolinite plus chlorite indicate that this till contains more expandables and

kaolinite plus chlorite with a lesser proportion of illite than the overlying till. These data support a

correlation to pre-lllinoian (Omphghent member of the Banner Formation) till in the region, the

type section of which is the Paddock Creek Section about 15 mi to the east-southeast (Table 2-3;

McKay, 1979b).

Mississippian limestone bedrock underlies either lllinoian or pre-lllinoian till at the quarry. In places,

the limestone surface is extensively striated and contains hairpin erosion marks (fig. 2-15), which

are excellent indicators of ice direction. Striation orientations, measured in a western portion of

the quarry on the bedrock surface below D horizon lllinoian till, appear to group in two directions,

with one set indicating ice flow from about N55°E (55°, 54°, 55°) and the other from about N40°E
(42°, 40°, 41°, 39°, 36°, 37°). Based on cross-cutting relationships of the scratches, the N55°E
striae are the older of the two sets. Whether both sets of striations are from lllinoian glacial

advances or whether one set is lllinoian and the other pre-lllinoian is not certain. However, both sets

are likely lllinoian because they occur only in areas where nearby lllinoian till rests on bedrock.

Hairpin erosion marks, elongate grooves normally formed around a small obstacle (Bennett and
Glasser, 1996, p. 116), are typically about 1-2 m in length at the quarry and are associated with

parallel striations and grooves within and surrounding them (fig. 2-15). The hairpin erosion marks
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dark brown to black, reddish-

brown and gray, mottled

pebbly loamy diamicton; soft;

up to 2" pebbles; some silt

and sand-filled channels in

low spots

supraglacial till,

debris flows

and glacifluvial

sediment

pebbly loam diamicton; gray;

strongly calcareous; hard;

contains beds of fine to

medium sand

subglacial till

and glacifluvial

sediment

limestone with striations and
hairpin erosion marks; dia-

micton injected into fractures

Figure 2-14. Stratigraphic column summarizing findings at Lohr Quarry. The northwest end of the highwall

was described on July 8, 1997 (exposure) by David A. Grimley and E. Donald McKay. The majority of

striations and hairpin erosion marks were observed and measured in June 1999.

are interpreted to have formed by glacial abrasion around nodules of chert which form the

obstacle about which the marks bend. Alternatively, they may have formed partially by erosion

from water or a water-sediment slurry. The hairpin erosion marks are important complements
to the striations because the tails of these erosional marks are unidirectional ice flow indicators,

pointing to the southwest at this site.
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Table 2-3: Grain size and compositional data for tills at Lohr Quarry and comparison with Paddock Creek

(from McKay, 1979b).

MS2

Geologic

unit

Grain size data
1

(x 10
s

SI

units)

Clay

Exp.

mineralogy
3

Site Gravel Sand Silt Clay lllite K + C

Lohr Quarry Glasford Fm. 5.9 35.3 41.6 23.1 32 58 10

Lohr Quarry Glasford Fm. 6.2 33.9 41.1 24.9 13 23 56 20

Lohr Quarry Omphghent 3.3 22.1 45.4 32.6 14 36 45 19

Paddock Creek Fort Russell 7.1 37.0 44.0 19.0 18 32 54 14

Paddock Creek Omphghent 2.7 24.1 46.8 29.2 12-48 40 44 15

'Gravel is expressed as the weight percent of bulk sample; sand (63 mm), silt (4-63 mm), and clay (<2 ^m) are

weight percent in the <2-mm fraction

2

Magnetic susceptibility.

Estimated percentages of minerals in the clay mineral fraction; peak intensities were measured by x-ray. Diffraction

after glycolation; peak intensity factors of three times for illite and two times for kaolinite plus chlorite (K+C) were

applied. Exp., expandable clay minerals, 17 A peak; illite, 10 A peak; K + C, 7 A peak. Clay mineral measurements

are courtesy of Herb Glass, Illinois State Geological Survey.

Figure 2-15. Hairpin erosion marks in the limestone at Lohr Quarry. Ice advanced from the right to the left

(generally from the northeast direction).
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Other striation orientations measured were about N20°E, N60°E, and N80°E. These directions

could be related to the ice advance that deposited the pre-lllinoian Banner Formation because

this till was present near where these striations were found. However, these striations are more
weathered, are not as prominent as the others noted, are not associated with hairpin erosion marks,

and are not grouped in one direction; thus, their reliability is more questionable.

Groundwater Issues The Quaternary deposits on uplands in the Alton area provide the frame-

work for the development of low-yield water wells in the region. Well water for rural upland farms

is commonly drawn from loose, sandy deposits in the upper portion of the Glasford Formation

(supraglacial and proglacial fades) where water collects below the permeable loess and above

the more dense and impermeable clayey basal till. Yields from these wells are relatively small

and suitable only for household water supplies. Lower portions of the Fort Russell till are uniform

in texture and are quite impervious to groundwater flow; thus, this unit is commonly drilled into

for an additional 10 to 15 ft to provide reservoirs for groundwater entering the wells from more
permeable untis above.

Groundwater in the uplands is also commonly drawn from fractured limestone bedrock. Un-

fortunately, the limestone bedrock is generally cavernous, and these bedrock aquifers are

susceptible to contamination through conduit flow (Panno et al., 1997). Henry Formation sand

and gravel and Cahokia Formation sand in the Mississippi River floodplain constitute the most

significant Quaternary aquifer in the Mississippi Valley bottomlands of the St. Louis Metro East

area. Water yields from this aquifer are large; however, the potential for contamination is great

because of the relatively thin covering of silt and clay (typically 0-40 ft).

Points to ponder

• By what process did the till fill into these fractures?

• What is the origin of the sand layers within and above diamicton of the Glasford Formation

(supraglacial or proglacial)?

SITE DESCRIPTIONS:
DAY 2 (ALTON TO BELLEVILLE)

Stop 6: Dunn Road Section (Grimley, Follmer, and Wang)

Columbia Bottom 7.5-minute Quadrangle, St. Louis County, Missouri and Illinois.

Overview The borrow pit, first studied in November 2000, is located in Missouri about 1 ,000 ft

north of Interstate 270 near the Riverside Drive exit (fig. 2-16). This site is very close to the former

exposure of the Chain-of-Rocks Section, which revealed similar geologic units during construction

of I-270 in the early 1960s (Goodfield, 1965). Only 1,500 ft west of the Mississippi River, this

borrow pit has been excavated into a hillside on the north side of Dunn Road. The soft Quaternary

sediments at the Dunn Road Section, a succession of fluvial, lacustrine, glacial, and eolian

deposits (figs. 2-17 and 2-18), are used for fill in area roadwork. The occurrence of lllinoian till

verifies the crossing of glacial ice into Missouri during the lllinoian Stage, as was noted by
previous researchers such as Goodfield (1965) and Robertson (1938). Fluvial deposits, older

and younger than the till, are likely from ancestral high levels of the Mississippi River.
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Figure 2-16. Location of Stop 6 (Dunn Road Section) in a portion

of the Columbia Bottom 7.5-minute Quadrangle (Illinois-Missouri).

Site Details The oldest unlithified

deposit at this locality is a highly

weathered siliceous sand and
gravel known as the Grover
Gravel (Willman and Frye, 1970).

The Grover Gravel, a nonglacial

fluvial deposit emplaced before

deep valley entrenchment began,

is considered to be of Pliocene or

early Pleistocene Stage. Although

the type section of the Grover

Gravel in western St. Louis

County exposes 40 ft of sand and
gravel (Willman and Frye, 1970),

only about 7 ft occurs at this local-

ity. The sand and gravel is highly

weathered and becomes more
clayey and reddish toward its top.

At other locations in the region,

the Grover contains clasts of

Baraboo Quartzite (Willman and
Frye, 1970), as well as jasper, indi-

cating a Lake Superior Province

source area.

Overlying the Grover Gravel is 1.5 ft of highly altered clay loam to clay. This unit has enough
silt to indicate that it may include loessal additions admixed with sand that was bioturbated from

below. The clay probably formed as a result of intense and long-term weathering of a pre-lllinoian

loess, such as the Crowley's Ridge Silt (Porter and Bishop, 1990) and perhaps older loessal

units as well. The strongly developed soil, containing an intensely developed Btt horizon, exces-

sive amounts of fine clay, and a 4YR color, is in the Ultisol class and is pedostratigraphically the

Yarmouth Geosol. In eastern portions of the borrow pit, this reddish clay is overlain by as much
as 1 .5 ft of a noncalcareous, brown silty clay loam with orange iron concretions. This unit appears

to be an accretionary A horizon of the Yarmouth Geosol, but thins considerably to the west

(uphill in both modern and paleotopography); it is interpreted as a depressional deposit.

As much as 1 1 ft of calcareous diamicton (Glasford Formation) sharply overlies the Yarmouth

Geosol and associated deposits at the measured exposure. This unit, interpreted as till, thins to

about 5 ft downslope to the east (fig. 2-17). Much shearing of the basal units is evident. The texture

of this till is variable but is typically a clay loam diamicton. Large bodies of gravel (Grover Gravel?)

and red clay (residuum or Yarmouth Geosol) occur within this till. These materials likely were

incorporated into the base of the glacial ice locally as it eroded into the hillside after crossing the

broad Mississippi River valley from the east. The incorporation of residual soil into glacial ice

probably caused the more clayey nature of this till compared with that on the eastern side of the

Mississippi Valley. Numerous erratics indicate a glacial origin for the unit. Regional indicators of

ice direction (striations near Alton; e.g., Lohr Quarry, Stop 5) suggest ice flow from the northeast

to east-northeast at this site (fig. 2-15). Goodfield (1965) also noted the presence of lllinoian till

near the bluffs very close to this area at the Chain-of-Rocks Section as well as a few miles to

the north and south.
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west hill crest

(elev. ~ 510 ft)

east

floor of borrow pit

modern
soil

Sangamon
Geosol

accretionary

soil

Yarmouth
Geosol

Grover Gravel

Pennsylvanian shale

Figure 2-17. Sketch of Dunn Road Section on November 3, 2000.

Illinoian till is overlain by a thick succession of lacustrine and fluvial deposits (figs. 2-17 and

2-18). A 1-inch thick bed of calcareous silty clay just above the till is interpreted to be overbank

sediment derived from a large-scale flood of the Mississippi and Missouri Rivers. This flood

was perhaps the result of damming of these rivers by Illinoian ice. An additional 6 ft of finely

laminated, strongly calcareous coarse silt (Teneriffe Silt) may have been deposited in an alluvial/

lacustrine environment during this blockage. This silt contains some faint cross-bedding and con-

tains another thinner clay bed in its middle portion and a 0.75-inch silty clay bed in its upper

portion. Above, this succession coarsens upward. Silt and very fine sand, some of which may
be eolian, quickly grade into weathered medium sand with a stone line above it containing up to

3-inch gravel clasts. This sand, interpreted as outwash, is similar to the Pearl Formation in other

areas but is included in the Teneriffe Silt because of stratigraphic nomenclature rules (Willman

and Frye, 1970). To the west of the described section, the weathered sand and stone line thicken

to as much as 8 ft of bedded sand and gravel, with the lower surface dropping in elevation.

Stratigraphic relationships at the exposure, including clear correlation of the clay bed layers,

indicate that the stone line to the east may be an erosional remnant of the thicker sand and
gravel to the west. Alternatively, the sand and gravel may have been originally thicker in the

western portion of the pit, and the stone line could be in part pedogenic (Johnson and Balek,

1991). The coarsening-upward sequence of sand and gravel may be explained by general

aggradation of the Mississippi River, perhaps during ice readvancement to just north of this area,

which caused deposition of outwash. As a result of river aggradation during this depos'tion or

perhaps during a torrent, the river may have topped glacial ice barriers in the valley and then

gradually incised into the valley. Because of the paucity of Illinoian deposits in the Mississippi
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Pedostratigraphy

modern soil AE
Bt

BC

Lithostratigraphy elev. - 510 ft Description Interpretation

Peoria Silt

10

Sangamon A
Geosol

Bt

BC

CO

CO
c
CO

g
DC

Meadow M.

Markham M.

stone line

Teneriffe Silt

20-

Glasford Formation

Yarmouth A
Geosol

Btt

BC

Crowley's Ridge

Silt

G rover Gravel

40

Pennsylvanian „
bedrock

A A A A A A A
A A A A A A A
A A A A A A A
A A A A A A
A A A A A A A
A A A A A A A
A A A A A A A
A A A A A A A
A A A A A A A
. A A A A A A
A A A A A A A
A A A A A A A
A A A A A A A
A A A A A A

A A A A A
A A A A A

•<c>- • -c>-

silty clay loam, 10YR 4/2

in A/E horizons; 9YR 4/4

in Bt; moderately-well drained

silt loam, 1Y 5/4, leached,

CB horizon

loess

loess

silt loam, 10YR 4/4, leached,

CB horizon
loess

silt loam to silty clay loam,

10YR 4.5/4 loess andcolluvium

clay loam to silty clay loam,

JJ5YR.4/5.

loam to clay loam, 8YR 4/6

sorted, 2.5Y 5/4-1 OYR 5/6,

leached to weakly calcareous

coarse silt with very fine sand,

finely laminated, vague cross-

bedding, 2.5Y 5/4, calcareous,

soft, liesegang bands

loess

weathered

outwash

lacustrine/eolian

sediment

lacustrine

sediment

clay loam diamicton, dense, 1

Y

5/4, calcareous, various lithol-

ogies, inclusions (up to several

feet diameter) of older residuum

and sand and gravel

till

clay loam to clay, 4YR 4/4 weathered loess

with admixed sand

clay loam, 5YR 4/6, some
7.5YR 5/4, subrounded sand-

\Size chert fragments

sandy loam to coarse sand and

gravel (<4 in), subrounded,

bedded, moderately sorted,

brown and white chert, silicified

\Paleozoic fossils, jasper

silty, bedded, black, noncal-

careous

nonglacial

alluvium

shale

Figure 2-18. Stratigraphic column summarizing findings at the Dunn Road Section. This site was described

by David Grimley, Hong Wang, and Leon Follmer in November 2000. The base of section is about 12 ft

above intersection of Dunn Road and Riverview Drive.
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Valley and its large tributaries, the level of the Mississippi River during Sangamonian time was
likely much lower than it is today. Deposits above the fluvial deposits are loesses and soils typical

for uplands in the St. Louis region.

The upper solum of the Sangamon Geosol is developed into 2-3 ft of loessal silt (Teneriffe Silt

and Roxana Silt), which has since been altered to silty clay loam (fig. 2-18). Lower horizons of the

Sangamon Geosol are developed in sandy outwash (mentioned above). The Sangamon Geosol

exhibits its typical physical properties, which are similar to those at other sites on this field trip.

The A horizon of the Sangamon Geosol has a cumulic character, having been developed as an

early portion of the Roxana Silt was being deposited. This thin unit, known as the Markham Member
of the Roxana Silt, and the polygenetic paleosol formed in it, can be philosophically distinguished

as the Chapin Geosol (Willman and Frye, 1970), which is often wedded to, and inseparable

from, the Sangamon Geosol.

The uppermost 15 ft of the Dunn Road Section is composed of Wisconsinan loess in various stages

of alteration (fig. 2-18). Above the 1 .5 ft of Markham Silt, 5 ft of Meadow Member of Roxana Silt

occurs. This silt is brown to faintly pinkish brown and is leached of carbonates. The Peoria Silt,

a more yellow-brown loess of late Wisconsinan Stage, is 10 ft thick, the uppermost 4 ft of which

includes the modern soil solum. The modern soil appears to be developed into original ground

on the hill crest and is a typical Alfisol (forest soil) for the area.

Points to ponder

• Do the clay beds and lacustrine silt record an ice-dammed Mississippi River?

• What depositional environment does the lllinoian outwash above the silt represent: an ice

readvance, general aggradation, glacial torrent, or other?

• Was the Mississippi River in its current valley during deposition of the Grover Gravel?

Stop 7: Keller Farm Section (Wang, Follmer, and Grimley)

Monks Mound 7.5-minute Quadrangle, 1 ,150 ft north of the southeast corner, Sec. 32, T4N, R8W,
Madison County, Illinois. Top elevation, -545 ft.

Overview The Keller Farm Section is located immediately east of the Mississippi River valley

about 12 miles northeast of St. Louis, Missouri (fig. 2-19). The Keller Farm borrow pit, formerly

utilized as fill for many roads in the St. Louis Metro East vicinity, exposes 14 m (46 ft) of Peoria

Silt, a loess unit deposited during the late Wisconsinan glaciation. The underlying Roxana Silt is

only barely exposed in a gully at the base of this large exposure. The thickness of Peoria

loess here is close to the thickest documented in Illinois and is in strong contrast to the consid-

erably thinner deposits found 10 mi to the west at the last stop on this field trip (Dunn Road Sec-

tion), where Peoria Silt is only about 3 m thick. This strong contrast in thickness is a result of the

predominantly westerly winds during the last glaciation.

Site Details At Keller Farm, an estimated 39 successive beds of loess and paleosols are exposed

(fig. 2-20). Close examination shows that the layers represent alternating paleosol A and C horizons.

The dark or redder (humic-iron staining) finer grained zones are A horizons, and the yellowish,

carbonate-enriched, and coarser grained zones are C horizons, less altered loess deposits.
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EDS V/ I/JL L
STOP 7 Keller Farm Section

aC22=^digfe^agsa:

A striking feature of this exposure is the quasi-

periodic oscillations of A and C horizons or

stronger A horizons and weaker A horizons. This

site provides the best Peoria loess record in the

Midwest and provides important evidence for

millennial and shorter scale climate change
studies of the last glaciation.

A total of 34 ages have been determined on soil

1 rganic matter (SOM) using conventional
14C

dating methods with large sample sizes (Wang
et al., 2000). Separate radiocarbon age determi-

nations were made on (1) total organic carbon

(TOC), (2) pyrolysis-volatile, and (3) pyrolysis-

residue fractions of SOM. Neither the TOC nor

the pyrolysis-residue fraction showed a correla-

tion with sample depth. Both fractions yielded
14C

ages that were unreasonably old. In contrast,

fourteen ages determined from the pyrolysis-

volatile fraction ages correlated with sample

depth with a correlation coefficient of 0.93. When
three relatively older ages are excluded, two

best fit linear equations are obtained with corre-

lation coefficients greater than 0.99 (fig. 2-21).

This age-depth model suggests that the age of

the bottom of the Peoria Silt, about 2 m beneath

the exposure, is around 25,000
14C yr B.P., which is consistent with previous estimates for the

beginning of Peoria loess deposition in Illinois (McKay, 1979a). The
14C ages from horizons 39,

28, and 12 (fig. 2-20) agree with the ages of paleosols described by McKay (1977), Follmer et

al. (1979), and Frye et al. (1974), that is, the Ruby Lane (23,000
14C yr B.P.), Gardena (19,600

14C yr B.P.), and Jules (16,000
14C yr B.P.) soils, respectively. The age of 13,700

14C yr B.P. from

horizon 8, about 1.2 m above the Jules (horizon 12), agrees with previous
14C ages in the Illinois

River valley (Grimley et al., 1998). The age of 1 1 ,400
14C yr B.P. from horizon 4 is comparable

with the ages (1 1 ,000-12,000
14C yr B.P.) of a buried soil developed near the top of the Peoria

loess in the Great Plains (Muhs et al., 1999) and the ages (1 1 ,700-12,000
14C yr B.P.) of the Two

Creeks soil (Kaiser, 1994) outside the loess belt in the Midwest. This age-depth model produces

a reasonable age estimate for this succession and yields resolutions of 140 and 70 yr per 10-cm

sample interval for the upper and lower parts, respectively. This model suggests that the aver-

age loess deposition rate declined by a factor of 2 at about 17,000
14C yr B.P. (fig. 2-21).

We ranked buried A horizons using a numerical scale of soil development based on soil color

(darkness and redness) and fabric (root traces and aggregate strength) (Follmer, 1998). The
strongest expressed A horizon was assigned a soil development value of 2.0, and the weakest

expressed horizon was assigned a value 0.2, which is a C horizon in a practical sense, because

all horizons at this site have some pedogenic characteristics. Five classes (0.2, 0.5, 1 .0, 1 .5,

and 2.0) were assigned to rank pedogenesis through the sequence.

Samples, collected every 10 cm vertically, were analyzed for magnetic susceptibility and organic

carbon isotopes. Magnetic susceptibility is affected both by pedogenic (in situ formation; leaching)

Figure 2-19. Location of the Keller Farm Section

in a portion of the Monks Mound 7.5-minute Quad-
rangle. The elevation of the top of the section is

about 545 ft.
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processes (Maher and Thompson, 1995;

Johnson and Willey, 2000) and by litho-

genic (sorting, provenance) processes

(Grimley et al., 1998) in loess-paleosol

sequences. Soil organic matter accumu-

lates from plant debris over many years,

and their 5
13CSOM reflects long-term annual

average C
3
/C

4
plant ratio (Wang and

Follmer, 1998; Wang et al., 2000). The
5

13CSOM and magnetic susceptibility values

are plotted on the five classes of soil

horizons (fig. 2-22).

Higher frequency variations in magnetic

susceptibility appear to oscillate in phase

with the 5
13CSOM values, and higher values

of both parameters typically correspond

to stronger paleosol A horizons (fig. 7.4).

Higher frequency variations in magnetic

susceptibility, a result of either magnetite

concentration during leaching or ferro-

magnetic mineral neoformation, are

superimposed on a broader lithologic

pattern (fig. 2-22), which is likely a reflec-

tion of source area shifts (Grimley et al.,

1998; Grimley, 2000). The 5
13CSOM values,

varying between -26.5% and -24%, indi-

cate an 18% oscillation in the ratio of

C
3
/C

4
plants. Although 5

13CSOM values

can be interpreted to be the result of

variations within C
3

plant regimes, other

independent evidence suggests that the

variations resulted from C
4
plant intru-

sions. For example, the 5
13C values of

soil carbonate at this site indicate signifi-

cant amounts of C
4
plants during growing

seasons (Wang et al., 2000), and the

pollen spectra of sites of the same age to

the northeast also indicate the presence

of C
4
plants (Gruger, 1972; King, 1979).

One possible explanation for these cor-

respondences is that sustained warm
precipitation from the Gulf of Mexico air

could have simultaneously favored pa-

leosol development, in situ formation of

ultrafine clay-size ferromagnetic miner-

als, and increased 5
13CSOM values.

12 m

*2,440 l4C BP 1-

22,810 "CUV

Figure 2-20. A view of the Peoria loess at the Keller Farm
Section in 1999. Radiocarbon ages of some of the minor

paleosols (dark bands) and depths are indicated on the

photograph.
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Figure 2-21. Carbon-14 age-depth models based

on two best linear fits at the Keller Farm Section.

Based on these models, the loess deposition rate

slowed considerably after about 17,000
14C yr B.P.

We also analyzed 5
13C of carbonate in rhizocon-

cretions and the total soil carbonate content of

the loess. The 5
13C values determined from these

rhizoconcretions (5
13CSC ) are an indicator of the

ratio of CJC4
plants over the growing season, a

proxy of warm-season climate (Wang and Follmer,

1998, Wang et al., 2000). Variations in total car-

bonate content also reflect mainly warm-season
influences because rhizoconcretion formation and

leaching of carbonate minerals, primarily dolomite

(McKay, 1977), are mediated by soil moisture,

which would be most active during the warm part

of a year when the ground was not frozen. Total

carbonate content can reflect changes in leaching

annual average proxies

Ms
intensity, grain size sorting, and source varia-

tions in the Mississippi, Missouri, and Illinois

River watersheds (McKay, 1977). Higher fre-

quency variations in total carbonate content at

the Keller Farm Section, primarily a leaching

index, are thought to be superposed on a long-

term trend of the source variations (McKay,

1977). Layers with smaller total soil carbonate

(SC) content and smaller 5
13CSC values (fig. 2-23)

reflect warmer/wetter summers that are favor-

able for C
3
plant growth. Layers with greater

total carbonate content and larger 6
13CSC reflect

colder, drier summers that would favor increased

proportions of C
4
plants (fig. 2-23). Because

these summer anomalies agree with regional

records of historic El Nino events, we hypothe-

size that the oscillation of reconstructed summer/

winter anomalies suggests paleo-EI Nino-

Southern Oscillation cycles (Wang et al., 2000).

Loess Erodibility Loess deposits are well

known for their easy erodibility. The small clay

content (<10% at Keller Farm) and large silt

content in thick loess deposits provide for a

largely cohesionless material that is easily

mobilized by running water. At Keller Farm, in

the last 3 years alone, erosional processes have

enlarged a rill 10 ft deep into the dirt road to

form a huge gully, which is visible at the base

of the borrow pit and now exposes the upper

few feet of the Roxana Silt.

5
,3CSOM%

-27 -26 -25 -24 -23 -22
soil horizon

40 50 60

x10'
5
(SI units)

increasing soil characteristics

enhanced the penetration

of the Gulf of Mexico air

<0.2 0.5 1.0 1.5 2.0

Peoria loess in the middle Mississippi River Valley

Figure 2-22. 5
13CSOM and magnetic susceptibility

are plotted on a background showing the five

classes of soil horizons at the Keller Farm Section.

The darker bands indicate stronger paleosol

development, based on morphology and color.
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Points to ponder

• To what degree are the cyclical

patterns in the data from Keller

Farm controlled by climatic versus

other causes?

• To what extent were climatic cycles

in phase with fluctuations of the

Laurentide Ice Sheet in midwestern

glacial lobes?

warm-season proxies

TCC % 5
,3C S

-9 -7 -5 -3

10 20 30 40

Peoria loess at Keller Farm Section

Figure 2-23. Total carbonate content (TCC) and 5
13CSC

plotted versus depth for the Keller Farm Section. Zones of

lower TCC and lower d13Csc are interpreted as represent-

ing warmer and wetter climates during growing seasons.

Stop 8: La Brot Borrow Pit (Phillips and Grimley)

Collinsville 7.5-minute Quadrangle, Brookhaven Road, NE, NW, NW Sec. 3, R8W, T2N, St. Clair

County, Illinois.

Overview Sediments exposed at the La Brot borrow pit, near the town of Collinsville, include

two Wisconsinan silt units and lllinoian diamicton (fig. 2-24). The Peoria Silt is here much thinner

than at the Keller Farm site, but color zonations, gleyed horizons, and subtle redoximorphic fea-

tures are preserved in the underlying Roxana Silt (figs. 2-25 and 2-26). Two separate pits enable

us to examine lateral variations of the Sangamon Geosol, which is developed in diamicton and

silt and contains a prominent stone concentration. Nearby, Pennsylvanian shales crop out in

adjacent valleys at an elevation just below the base of the pit. This bedrock has been deeply

incised west of the borrow pit in Canteen Creek valley (fig. 2-24), which is filled with up to 50 ft

of Wisconsinan and possibly lllinoian lacustrine silts and alluvial silts, sands, and gravels and is

capped by recent alluvial silts.

Safety note: Mr. La Brot is concerned about sudden collapse of the pit wall, and you
should be, too. Please remain attentive and approach the exposure cautiously.
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Figure 2-24. Location of the La Brot borrow pit in a portion of the

Collinsville 7.5-minute Quadrangle. Topography was updated in

1986.

Description Interpretation Pedostratigraphy Lithostratigraphy

yellow brown
silt loam with modern
soil in upper 2 ft

loess modern soil Peoria Silt

pinkish, soft silt loam, loess

gray mottles, leached

Roxana Silt

Meadow Member A

tan ( 1 0YR5.5/4) silt loam, loess

dolomitic

Roxana Silt

Meadow Member B

pinkish (8YR5/4) silt loam, loess

leached with secondary

carbonate

Roxana Silt

Meadow Member C

gray-tan silt loam to light colluviated silt Sangamon Geosol Roxana Silt

silty clay loam, gleyed and diamicton » Markham Member

,
, stone line! with paleosol

reddish brown, dense till with paleosol Bt

silty clay loam diamicton,

strongly mottled, large BC
argillans and mangans along

joints and root pores

Figure 2-25. Photograph and description of an exposure in the upper La Brot borrow pit.
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Peoria Silt

(loess - colluvial)

Figure 2-26. Sketch of exposure in the lower La Brot borrow pit. Material properties are similar to those of

the upper pit (fig. 2-25), except that calcareous C horizon till is exposed here.

Site Details, Upper Pit The upper pit is cut obliquely into a southwest-facing slope such that

the exposure varies from approximately 22 to 33 ft high (fig. 2-25). Unit thicknesses, particularly

the uppermost unit, vary across the exposure.

From to 3 ft is a light yellow-brown silt loam, slightly mottled, with the modern soil developed in

the top (fig. 2-25). Laterally, this unit thickens to approximately 10 ft. There is a clear lower contact.

This part of the exposure is generally inaccessible, but from its visible properties, is interpreted

to be loess and is classified as Peoria Silt.

Between 4 and 20 ft is a silty unit distinguished by prominent pink-tan-pink color zonations. From
its softness and massive fabric, the unit is interpreted to be loess and is classified as Roxana
Silt. The upper pinkish layer, about 7 ft thick, is a soft silt loam, leached, with gray mottles. It has

a graded but clear lower contact. The underlying tan (10YR 5.5/4) layer, about 2 ft thick, is a

very weakly dolomitic, gray-mottled, silt loam to light silty clay loam with a gradational but clear

lower contact. The lowermost pinkish (8YR 5/4) layer is a silt loam to silty clay loam about 6 ft

thick. This unit is leached but has secondary carbonate and a gradational lower contact. The
lowermost foot of the Roxana Silt is a gleyed silty clay loam with sparse fine gravel clasts. It is

leached and contains Mn(?)-cemented krotovina and an abrupt lower contact. The gravel becomes
increasingly concentrated downward until it merges with the stone line in the underlying unit. The
redox features are attributed to accretion of the A horizon of the Sangamon Geosol during the

onset of loess deposition. The origin of the gravel may be from colluviation of underlying diamicton

from higher portions of the paleolandscape, bioturbation, or both.

The lowermost 3 ft of the exposure consists of a dense silty clay loam diamicton with distinct

mottles and large argillans and mangans along joints and root pores. Clasts include local sedi-

mentary and erratic metamorphic and igneous lithologies. Concentrations of fine gravel, up to

0.5 ft thick, and coarse to fine gravel, one or two clasts thick, form a "stone line" at the upper

contact that is gradational with the overlying unit. At nearby sites, correlative diamictons include

from a few to many lenses 3-5 ft wide of fine to medium sand. The weathering features are

interpreted as Bt to BC horizons of the Sangamon Geosol. The diamicton is interpreted as a

subglacial till and is classified as the Glasford Formation. Presumably the till extends down to

the underlying Pennsylvanian shale bedrock, as has been observed in nearby outcrops and
borings.
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Site Details, Lower Pit A complex arrangement of sediment units is exposed in the lower pit

at this site. Thickness and properties of the silt units vary considerably across the exposure, and
the lllinoian surface has several feet of relief (fig. 2-26).

From the middle of the exposure to the southwest, a light yellow-brown silt loam thickens from

to 12 ft toward the creek valley and ultimately forms the entire exposure. The lower contact is

subparallel to the modern land surface. The modern soil is developed in the upper 2 to 4 ft of this

unit. The lowermost part of the unit is gleyed in the southwest part of the pit. Liesegang banding

above the gley is thought to be due to upward-directed wetting fronts from groundwater discharging

into the creek valley. This unit is interpreted as loess and is classified as the Peoria Silt.

On the northeast side of the exposure, the modern soil is developed in silt loam that is as much
as 15 ft thick and is classified as the Roxana Silt. Color zonations are as prominent as those at

the upper pit, but more compressed here. The pink-tan-pink sequence, interpreted as primarily

loess, is repeated in the upper 10 to 12 ft. The lowermost portion is a tan, silt loam to silty clay

loam with sparse pebbles and is interpreted as colluvial sediment. A prominent stone line at the

base of the sequence is subparallel to the modern surface. The stone line is thin and dispersed

to the northeast, but thicker and more concentrated in middle of the exposure. Redoxomorphic
features are interpreted as a cumulic A horizon of Sangamon Geosol.

The lowest sediment unit is a diamicton that is exposed on the northeast side of the pit but is

covered in the middle and cut out to the southwest. Below a clear but gradational contact with

the Roxana Silt is about 2 ft of reddish brown silty clay loam to clay loam diamicton. It has a

strong blocky structure, large argillans, and mangans along joints and pores. These features are

interpreted as the Bt horizon of the Sangamon Geosol developed in till, which is classified in the

Glasford Formation. Underlying the Sangamon is 2 ft of C horizon dense, light brown to olive-

brown, calcareous silt loam diamicton interpreted as subglacial till.

Discussion In the regional model for loess thickness (Fehrenbacher et al., 1986; McKay 1979b),

silt was deflated from the Mississippi River floodplain during westerly storms. Thus, total loess

accumulation was greatest (up to 100 ft) at the bluff edge and decreased exponentially eastward

to a thickness of 30 ft within about 3 mi of the bluff edge. In uneroded areas, the Peoria Silt is

proportionally thicker than the Roxana Silt and thins eastward less rapidly. The La Brot pit lies

about 2 mi from the bluff edge, but the total loess thickness is significantly less than predicted,

and the Roxana Silt is thicker than the Peoria Silt at this exposure. This difference is attributed

to loess erosion concurrent with and subsequent to Peoria deposition in this area of hilly topo-

graphy. Furthermore, variations in sedimentary features and stratal thicknesses between the

upper and lower pit exposures can be attributed to greater erosion during sedimentation near

the creek valleys than away from them. Sediments in the upper pit accumulated relatively far

from valley slopes in a relatively stable geomorphologic environment.

Modern soil is developed in the Roxana Silt over the northeastern portion of the lower pit (fig.

2-26). From about halfway across the exposure, an erosional surface subparallel to the modern

surface truncates Roxana Silt, and overlying Peoria Silt in turn thickens southwestward toward

an intermittent creek valley. Gleyed zones and liesegang banding in the Peoria Silt to the south-

west reflect the lowered landscape position relative to the water table. These features attest to

the influence of slope processes along the creek valley walls and stability of valley configuration

over a great span of time.
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Pink-tan-pink color zonations in the Meadow Member of Roxana Silt were noted previously by

Willman and Frye (1970), McKay (1977), and Grimley et al. (1998) in thick accumulations of

Roxana Silt proximal to the Illinois and Mississippi Rivers in southwestern Illinois; these zonations

even occur as far south as Crowley's Ridge in Arkansas. McKay (1977, 1979b) suggested that

the color patterns may be related to source area variations. He noted that the tan zone (some-

times gray) is generally more illitic and dolomitic in the St. Louis area and thus may have more
Paleozoic contributions, perhaps from an ancestral Lake Michigan Lobe. Wood collected from

the base of the tan zone, where a sand layer occurs in some places, have been dated 40,000
14C yr B.P. (McKay, 1977, 1979b). The upper and lower pink zones were hypothesized to record

more contribution from the Upper Mississippi Valley region northwest of Illinois. Although the

Lake Michigan Lobe is no longer thought to have been active during Roxana Silt deposition

(Curry and Pavich, 1996), changes in provenance may have occurred in response to shifting

positions of more northern glacial lobes (i.e., Superior, Wadena, or Des Moines lobes), which

are suspected to have been source contributors to the Roxana Silt (Leigh, 1994; Grimley, 2000).

Alternatively, pedogenic effects, such as the Farmdale Geosol and earlier pedogenic activity,

may be partially responsible for the color and mineralogical changes in the Roxana Silt. The
pinker zones are typically more leached of carbonate and contain fewer gastropod shells.

The character of the stone line at the top of the Sangamon B horizon varies across these expo-

sures. Clasts are more concentrated and have a larger maximum size in the lower pit than in

the upper pit. In addition, the upper contact of the diamicton is sharper, and the immediately

overlying sediment is more pebbly in the lower pit. Stone lines have been attributed to lag deposits

on erosional surfaces and bioturbation (e.g., Johnson and Balek, 1991). The relative prominence

of the stone line in the lower pit most easily supports an erosional lag interpretation, but the

abundant pebbles in the overlying loess supports a colluvial interpretation. These features are

expected with increased slope.

Economic Issues Mr. W. La Brot has been selling the loess out of this pit in his backyard for

more than 20 years. The hill originally sloped gradually down to where his house is now located.

The land surface on the south side of the upper pit exposure follows this slope. The loess is used

locally by individuals and city planners for yards, flower berms, shrubs, and fill material.

The value of each load (8 to 8.5 U.S. tons) has increased considerably in recent years because
many other borrow operations have shut down in this rapidly urbanizing area. So called "bluff

dirt," which is mainly Peoria Silt, sells for $44 per load today, whereas the underlying "dirt," mainly

Roxana Silt, sells for $40 per load. These prices are about double those of 20 years ago according

to Mr. La Brot. The Peoria Silt is the more valuable because its lower clay content makes it drier

and more friable than the Roxana Silt. These properties make the Peoria Silt well suited for

yards and gardens because it produces a very fine fertile topsoil and is easily spread out. The
Roxana Silt from this borrow pit is more often used for fill. Mr. La Brot had at one time been
approached by the Illinois Department of Transportation for purchase of the loess for road fill.

The relatively high moisture content in the lower portion, however, reduced the value to below

that for his other business.

Points to ponder

• Is the stone line within the Sangamon Geosol erosional, biogenic, or both?

• Does the pink-tan-pink horizonation of the Roxana Silt reflect changing provenance of Mississippi

Valley floodplain alluvium, or is it pedogenically controlled, or both ?
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Stop 9: Prairie Du Pont Section (Grimley)

French Village 7.5-minute Quadrangle, SE, NW, NE Sec. 21, T1N, R9W, St. Clair County, Illinois.

Overview The Prairie Du Pont Section, exposed in a large cutbank on the south side of Prairie

du Pont Creek (fig. 2-27), lies on a highly dissected portion of the lllinoian till plain in the St. Louis

Metro East area (figs. 2-2 and 2-4). First discovered in 1998 by Brett Denny (an ISGS geologist),

the site exposes a classic sequence of Wisconsinan loesses overlying lllinoian till and lacustrine

deposits and a well-expressed Sangamon Geosol.

Site Details The basal 19 ft of this section consists of a locally significant lacustrine unit known
as the Petersburg Silt (fig. 2-28). This unit is predominantly crudely bedded silt and is probably

composed largely of redeposited loess. The upper 1-2 ft is oxidized olive-brown. Below this, the

silt is gray, calcareous, and fossiliferous and contains scattered erratic pebbles, interpreted as

dropstones from melting icebergs.

Above the Petersburg Silt is a relatively thin exposure (6 to 10 ft) of Glasford till (loam diamicton)

and sandy sorted sediment. Some sand-filled channels are present in the upper and lower

portions of the Glasford Formation, deposited during the lllinoian Stage. The Glasford Formation

is overlain by about 3 ft of late lllinoian loess that has been significantly altered by the Sangamon
Geosol. The well-developed Sangamon Geosol is predominantly reddish brown silty clay loam

and is typical of moderate to well-drained interglacial soil profiles, containing numerous clay skins

and some mottling. The upper portion of this section (fig. 2-28) consists of the two extensive

Wisconsinan loess units (Peoria and Roxana Silts). Some of the Peoria Silt has been truncated

along the hillside; total loess thickness is about 30 ft on nearby hilltops, whereas the total thickness

here is 1 5 ft.

Gastropods and Bivalves in the Petersburg Silt Fossils are mainly aquatic gastropods

(Lymnae, Gyraulus, Pomatiopsis, and Catinella) with some terrestrial genera of gastropods

(Hendersonia) as well as some aquatic bivalves (Pisidium or fingernail clams), all of which range

from about 2 to 6 mm in length or width. Identifications were based on photographs in Leonard

and Frye (1960) with some identifications by Eric Oches (University of South Florida). Pomatiopsis

is a genus common in areas of moist land or in shallow water with freshwater plants (Baker,

1931). Terrestrial gastropods, such as Hendersonia, were probably washed into the lake. One
ostracode species (Cypridopsis vidua) identified by B. Brandon Curry (ISGS) also suggests a

shallow water environment sourced by groundwater and occasional flooding. Amino acid ratios

(alloisoleucene/isoleucene peak heights) on gastropod (Pomatiopsis and Catinella) and bivalve

{Pisidium) shells from the Petersburg Silt are generally in the range of 0.16-0.19 (courtesy of

Eric Oches, University of South Florida, 1999). These results are typical for lllinoian Stage

deposits in the region (Miller et al., 1994).

Oriented Spruce Logs in the Petersburg Silt During repeated visits to the site in 1998 and

1999, several spruce {Picea) wood fragments (identified at the U.S. Department of Agriculture

Wood Anatomy Research Lab, Madison, Wisconsin) were found scattered throughout the

Petersburg Silt (fig. 2-29). Large spruce logs, 4 to 5 ft long and several inches in diameter, found

in basal portions of the silt, were oriented in a similar direction, perhaps parallel to a paleocurrent

direction. The considerable thickness of fine-grained lacustrine sediment and diamicton was
conducive to excellent preservation of the logs. Many logs have intact bark (fig. 2-30), suggesting
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a lacustrine environment with

only very slow-moving waters

(consistent with a slackwater

environment).

Slumping A large slump block

at the center of this exposure (fig.

2-31) appears to have failed at

approximately the level of the

Sangamon Geosol. At this depth,

below about 1 5 to 25 ft of loess,

the higher clay content and more

poorly sorted character of the

Sangamon Geosol (developed

into diamicton and silt) act as a

relatively impermeable zone to

groundwater flow and infiltration.

The Sangamon Geosol solum is

commonly close to the local water

table level, or just above it in this

case, thus forming a perched

water table level. In either scenario,

higher pore water pressures and

the additional weight of the water

acting on these type of steep

slopes are the combination of factors that often lead to slumping in thick loess deposits. The
oversteepening of the bank caused by the erosion into this cutbank by Prairie du Pont Creek was
the "last straw," triggering the slumping of this block, which was previously in a marginally stable

condition. This type of slumping is very common in the region, particularly in loess deposits. This

process is discussed more completely by Su elsewhere in this guidebook.

Figure 2-27. Location of the Prairie du Pont Section in a portion

of the French Village 7.5-minute Quadrangle.

Points to ponder

• Are fossils in the Petersburg Silt representative of the peak glacial environment of the lllinoian

Stage?

• Could erratic pebbles in the Petersburg Silt have been eroded from uplands that might have been
glaciated in the pre-lllinoian, or are they dropstones from icebergs backed up Prairie du Pont

Creek from the Mississippi Valley or from concurrent ice on uplands?
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Pedostratigraphy Lithostratigraphy

modern AE
soil

truncated ground

surface = 485 ft
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Peoria Silt
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Roxana Silt
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Teneriffe Silt

20

Glasford g
Formation

25

Petersburg

Silt
30

35-'

40

Pennsylvanian

bedrock

-^2-

Description Interpretation

silt loam; yellow-brown; eroded at

top of section; contains modern loess

soil

silt loam; pinkish brown loess

silty clay loam; contains cutans,

silans, organic stains, and
blocky structure

loess

pebbly loam to clay loam diamic-

ton, some sand-filled channels

and sorted sediments

-"R"- channel

till and
ice marginal

sediment

silt loam with sparse pebbles

(dropstones?); some zones

thickly bedded to crudely lami-

nated with some contortion;

yellow-brown to gray; mollusks

include mainly aquatic gastro-

pods, finger nail clams and

ostrocodes; large spruce logs,

particularly in the lowest several

feet of unoxidized silts

Picea or Larix logs

(up to 4 ft long)

slackwater

lacustrine

sediment

creek level

siltstone and fine sandstone;
' — ——— — ——J bedrock exposed in creek up-

L=J stream about 200 feet

Figure 2-28. Stratigraphic column summarizing findings at the Prairie du Pont Section. The section was
described in November 1998 and in October 2000. The elevation is approximately 485 ft at the section top.
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Figure 2-29. View of the lower portion of the Prairie du Pont

Section, showing the Petersburg Silt with its vague laminations,

sparse distribution of pebbles, and wood fragments.

Figure 2-30. Close-up view of a well-

preserved spruce (Picea) log with

preserved bark from the Prairie du
Pont Section, suggesting very still

lacustrine conditions.

Figure 2-31. View of a

slump block in the dis-

tance at the Prairie du

Pont Section. The Peters-

burg Silt can be seen at

the base of the section

in the lower right, with

loess exposed in the

upper one-third of the

outcrop. The Sangamon
Geosol and Glasford

Formation are covered

with colluvial material in

this photo.
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ENGINEERING PROBLEMS CAUSED BY LOESS
IN THE ST. LOUIS METRO EAST AREA

—Wen Jun-Su, Illinois State Geological Survey

Table 2-4: Engineering geology properties of

loess deposits in the St. Louis Metro East area.

Loess, which constitutes a significant part of the

surficial materials in the uplands of the Metro East

area, is often difficult to manage when used as

an engineering material. The engineering prob-

lems associated with loess are caused by its

unconsolidated nature, uniformly small particle

size, and unusual engineering properties (Table

2-4).

The stability of loess deposits is strongly related

to several geotechnical properties: in situ bulk

density, natural moisture content, Atterberg limits,

and erodibility. Generally, loess has relatively low

bulk density and low to moderate compressibil-

ity. Some loess may be collapsible. Because of

its low clay content, which serves as the princi-

pal binder material, most loess is virtually non-

plastic. Because of some binding by clay, loess

has a moderate shear strength, has moderate

bearing capacity, and is normally stable when
dry. However, water saturation causes loess to

become unstable by reducing its shear strength

to extremely low levels. Loss of compressive

and shear strength upon wetting is largely the

result of softening and swelling of the clay, which

is its primary cementing agent.

Major engineering problems associated with loess are (1) slumping and sliding failures in

its primary, (2) foundation failures in houses and structures, and (3) erosion.

Particle size

Sand, %
Silt, %
Clay, %

Thickness, ft

Slope

Bearing capacity

Frost/heave

Erodibility

Water table

Permeability

SPT (blow)

Compressive strength, tsf

Natural water content, %
Liquid limit

Plastic limit

Plastic index

0-5

65-95

5-25

15-100

level to steep

low to moderate

high

high

high to moderate

high to moderate

3-13 (avg. 7)

0.4-1 .6 (avg. 1.0)

20-33 (avg. 26)

28-47 (avg. 32)

22-30 (avg. 26)

2-17 (avg. 6)

Slope Problems

Engineering properties of loess are highly dependent on its water content. Loess has unusual

shear strength and assumes a nearly vertical angle of repose as long as it remains relatively dry.

As shown in figure 2-32, the design of roadcuts can utilize this unique loess property. Vertical

cuts can be constructed in loess above the water table, but gentle slopes with porous retaining

structures must be constructed where loess is below the water table to ensure a stable embank-
ment. The construction of ponds, excessive watering of lawns, and use of septic tanks and

fields may cause loess to become saturated and cause slope stability problems.
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Figure 2-32. Typical slope stability problems in loess (modified from DuMontelle et al., 1971).

Saturation of the Roxana Silt is responsible for most of the slope failures in the area. This satu-

ration is likely a result of a perched water table formed on top of the more clayey Sangamon
Geosol, which commonly has a clay content of about 30% in B horizons and is typically developed

into till in this region. In addition, because the Roxana Silt has a slightly greater clay content

than does the Peoria Silt, surface water that percolates downward easily through the Peoria

loess can also form a perched water table at the contact of the two loess units. Other potential

perched water tables may form at contacts with Pennsylvania shales. These perched water tables

not only cause slope failures, but also initiate soil creep on steep slopes of 20% or more.

Foundation Problems

Loess is a suitable foundation material when dry but not when wet. Its most unfavorable charac-

teristic, loss of compressive and shear strength upon wetting, is often difficult for foundation

engineers to manage. Typical foundation problems include excessive and uneven foundation

settlements. Methods used to overcome these problems include compaction, chemical grouting,

reinforcement, employment of geomembranes, special drainage system, terracing, and grassing.

For more information and discussion, please refer to Evstatiev (1988).

Erosion Problems

When stripped of vegetative cover, loessal soils are subject to rapid erosion. Removing vegetative

cover in the early stage of subdivision development allows gullies to form and causes siltation down-

stream. A more serious type of erosion that often goes undetected is subsurface erosion that

takes place under streets and foundations. Loess is easily eroded and transported by water seeping

through soil as well as by flowing on the surface. When water is allowed to flow under a structure,

the silt and clay size particles of soil are removed. Initially this process, known as piping, is slow

and insignificant, but increases rapidly once started. If allowed to continue, piping can cause a

significant loss of foundation support.
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AMINOSTRATIGRAPHY OF THREE PLEISTOCENE SILTS
IN THE COLLINSVILLE-BELLEVILLE AREA, ILLINOIS

—Eric A. Oches, Department of Geology, University of South Florida,

4202 E. Fowler Ave. SCA 528, Tampa, FL 33620

Amino acid geochronology has been successfully applied in the stratigraphic correlation of

Pleistocene loess and other silt units in the Mississippi Valley (e.g., Clark et al., 1989; Mirecki

and Miller, 1994). New exposures and drill cores of fossiliferous lllinoian Petersburg Silt and

Chinatown Silt, plus the Wisconsinan Roxana Silt and Peoria Silt, afford new opportunities to

test the ability of amino acid racemization data to correlate and distinguish among these four silt

units in west-central Illinois. Previous aminostratigraphic investigations in the region have been

based on epimerization of the amino acid isoleucine to its non-protein diastereoisomer alloiso-

leucine. The alloisoleucine/isoleucine (A/I) ratio is a measure of the age and post-depositional

temperature history of the fossil mollusk shells on which the measurements are made.

Results presented in Table 2-5 show racemization data for two different amino acids: aspartic acid

(Asp), which racemizes relatively rapidly, and glutamic acid (Glu), which racemizes relatively slowly,

similar to isoleucine. Samples were analyzed using reverse-phase liquid chromatography following

methods described by Kaufman and Manley (1998). Results of these analyses suggest that the

ratios of D-Asp/L-Asp allow researchers to be able to differentiate between the Peoria and Roxana
Silts, which cannot be differentiated using D-Glu/L-Glu and A/I (Clark et al., 1989). Both D/L pairs
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Table 2-5: Results of amino acid analyses in common gastropod genera from

four Pleistocene silt units in west-central Illinois.

Lab no. Genus D-Asp/L-Asp D-Glu/L-Glu

Peoria Silt—Keller Farm Section, Collinsville, Illinois

FAL-031

4

Succinea 0.31 7 ± 0.044 (1 2)
1

.064 ± 0.01 1 (1 2)

Roxana Silt—Schoolhouse Branch Section, Collinsville, Illinois

FAL-0307 Succinea 0.410 ± 0.067 (2) 0.074 ± 0.004 (2)

Petersburg Silt—Prairie Du Pont Section, Belleville, Illinois (Stop 9)

[outcrop FRV-15F]

FAL-01 16 Catinella 0.566 ± 0.042 (2) 0.235 ± 0.021 (2)

FAL-0117 Pomatiopsis 0.613 ± 0.042 (2) 0.260 ± 0.014 (2)

Petersburg Silt—Southwestern French Village Quadrangle, Belleville, Illinois

[coreFRV-2-123']

FAL-0194 Pomatiopsis 0.534 ± 0.015 (2) 0.158 ± 0.018 (2)

[coreFRV-1-95']

FAL-01 92 Pomatiopsis 0.575 ± 0.024 (3) 0.194 ± 0.006 (3)

Petersburg Silt—Powdermill Creek Section, Belleville, Illinois

FAL-0336 Succinea 0.577 ± 0.041 (5) 0.210 ± 0.036 (5)

FAL-0341 Succinea 0.592 ± 0.105 (4) 0.178 ± 0.051 (4)

FAL-0338 Pomatiopsis 0.548 ± 0.063 (8) 0.205 ± 0.023 (8)

Values are means ± standard deviation (number of analyses).

can be used to distinguish between Wisconsinan and lllinoian units. The Petersburg Silt and

Chinatown Silt of McKay (1979) cannot be distinguished on the basis of D/L ratios; the two units

are either very close in age, or they represent sedimentation during the same glacial episode.

Three samples of gastropod shells from the Petersburg Silt were submitted by David Grimley,

ISGS, for amino acid analysis. Sample FRV-15 was from the Prairie Du Pont Creek outcrop, and

FRV-1-95' and FRV-2-123' were collected from drill cores nearby in the French Village Quadrangle.

The D-Asp/L-Asp and D-Glu/L-Glu values measured in shells of the gastropod genus Pomatiop-

sis suggest that samples collected from silt exposed in the creek cutbank may be slightly older

than those recovered from drill cores. Samples collected from the Chinatown silt yield D/L ratios

comparable with those from Petersburg Silt drill cores. With measurements on additional gastro-

pod genera and from additional silt units, a comprehensive aminostratigraphy can be developed

for the stratigraphic correlation and relative age evaluation of silt units throughout the region.
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URBAN EROSION IN MADISON COUNTY

—Leslie Michael, Madison County Natural Resources

Conservation Service

Soil erosion is a major problem in Madison County, a predominantly urban county in southwestern

Illinois. Soil erosion is one of the greatest threats to the nation's productivity and the largest source

of pollutants to our waterways. Many years ago, farmers were primary contributors to soil erosion

by not investing in the soil through crop rotation or the addition of manure or other nutrients.

Because land was cheap and plentiful, those investments did not seem to be a good economic
decision when one could simply farm elsewhere when the soil became depleted of nutrients and
organic matter. In recent years, the farming community has learned valuable lessons about the

effects of soil erosion, and erosion mitigation practices are now commonplace.

Today, in a time of growing populations and expanding cities, shopping centers, and major high-

ways, an additional challenge is to reduce the amount of erosion from the urban sources that are

increasingly replacing formerly rural landscapes. During rain events, impervious surfaces such

as rooftops, sidewalks, roads, and parking lots prevent stormwater and runoff from naturally

seeping into the ground. Rainwater subsequently runs across these surfaces until it can soak

into the ground or find some way to a local stream, often causing erosion along the way. The
increased flow of water to stream channels at faster rates can widen streams by increasing bank

erosion, can degrade habitat structure, can decrease the stability of the channel, and can fragment

the tree canopy that holds soil in place along stream banks.

Four main properties determine a soil's erodibility: texture, slope, structure, and organic matter

content. Although texture is probably the most important of these properties, texture is also an

inherent soil property that is impractical to change. Much of the soil in Madison County is formed

in materials that are high in clay and especially in silt content, and thus the soil erodes very easily.

Following erosion, the silt portion of the soil settles out in roads, ditches, ponds, and lakes and

causes siltation problems. Clay particles stay in suspension, causing bodies of water to be turbid.

Loess soils, which contain predominantly silt-sized particles, occur on all uplands in the area but

are especially prevalent in bluff areas. The Natural Resources Conservation Service (NRCS) has

worked with many individuals and groups on erosion problems in these areas. For example,
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Southern Illinois University at Edwardsville, located on the bluffs east of the town of Wood River,

has installed detention basins in upstream locations on the university property in order to both

slow runoff and reduce sedimentation in the creeks. The detention basins provide temporary

storage for stormwater and associated runoff and release water at a much slower rate. These
detention basins have trapped a significant amount of sediment, and high flows seem to have been

reduced downstream. The NRCS is also working with the U.S. Army Corps of Engineers to identify

and restore wetlands in the American Bottoms to temporarily store floodwaters. The shallow water

areas proposed can take on and store the additional runoff to reduce flooding tendencies.

There are means of better holding the soil in place and reducing runoff, but these issues are

still enormous problems to manage. We must strive to implement erosion control plans and

carry them out before development occurs if we hope to keep the soil in place. The soil is a

valuable resource that we do not want to lose!
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Sequence Stratigraphy of Pennsylvanian Cyclothemic
Strata of Central Peoria County, Illinois

C. Pius Weibel
Illinois State Geological Survey

INTRODUCTION

The cyclothems of Harold Wanless and J. Marvin Weller (1932) are prominent, if not famous,

features of the Middle and Upper Pennsylvanian strata of the Illinois Basin. These stratigraphic

successions, which are akin to depositional sequences, are underutilized for stratigraphic and
mapping purposes. This field trip examines Middle Pennsylvanian (Desmoinesian Stage/West-

phalian D Series) strata near the area where Wanless developed the cyclothem concept, as well

as near the site of the earlier studies of cyclic deposition of Udden (1912). Topics to be discussed

on this field trip include (1) how cyclothemic deposition fits within "Slossian" sequence stratigraphy,

(2) whether a standard lithostratigraphic hierarchy is possible for cyclothemic strata, (3) possible

alternative approaches to cyclothemic stratigraphy, and (4) local and regional sedimentologic and

stratigraphic characteristics of the strata.

The stratigraphic interval of the outcrops encountered on this field trip ranges from just below the

Houchin Creek Coal to just above the Danville Coal. Since 1960, most of this interval (except for

the stratum above the latter coal) has been placed within the Carbondale Formation of Illinois as

defined by Kosanke et al. (1960). Several recent reports, however, have used different formational

boundaries (Nelson et al.,1991; Nelson, 1995a), and one report (Nelson, 1995b) simultaneously

utilized two different beds for the lower boundary. All of the named stratigraphic units in this guide-

book are formal members of the Carbondale Formation (for a general reference, see Hopkins

and Simon, 1975). For brevity, the term "Member" is omitted throughout this guidebook.

ROAD LOG AND SITE DESCRIPTIONS

The road log begins at the northern junction of Interstates 74 and 55, northwest of Normal, Illinois.

Moraine identification was derived from the maps of Willman and Frye (1970) and Grimley and

Andrew (2000).

Proceed west on I-74. Between the junction and Congerville, the route parallels the edges (right

side; northeast) of (1) the Normal Moraine (right side; northeast) and then (2) the overlapping

Eureka Moraine. Just after MP 117, the road turns west away from the moraines. Cross the

Mackinaw River at MP 1 1 3.5. At MP 110, the Bloomington Moraine is in view to the south. Just

after MP 108, the route begins to ascend the Bloomington Moraine. The top is at about MP 106,

and the outer edge is reached just before the Morton village limits (MP 104). Take Exit 99 onto

I-474 west (left). Between here and the Illinois River valley, the route crosses the LeRoy and
(overlapped) Shelbyville Moraines, the latter of which is the terminal moraine of the Wisconsin

glacial episode. Cross the Illinois River at about MP 8.6 (I-474). At MP 3.5 (I-474), the Brereton
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Limestone crops out on the south side (left) of 1-474. Merge with 1-74 west (Exit B). Exit from

1-74 at Exit 82; turn north (right). Enter Kickapoo Village. Turn left (west) onto US-150. Turn right

(north) onto Princeville-Jubilee Road. Turn left (west) onto Jubilee College Road. Turn right (north)

just before the entrance to the Jubilee College Historical Area. Descend the hill, cross the ford

over Jubilee Creek, and park along the road.

Stop 1: Jubilee Creek Ford

Property Owner State of Illinois.

Location Oak Hill 7.5-minute Quadrangle. NE/4, NW/4, SE/4, Sec. 26, T10N, R6E. Outcrops

will be examined in two locations: a high cutbank along Jubilee Creek (UTM 265470E, 4522220N)

and exposures along a tributary adjacent to the park road (UTM 265565E, 45221 60N). (All

Universal Transverse Mercator locations are in zone 16, 1927 North American datum.) The
composite stratigraphic column (fig. 3-1) is based on data measured at both sites.

General Stratigraphy Houchin Creek (a.k.a. Summum or No. 4) Coal, Excello Shale, Covel

Conglomerate, Springfield (a.k.a. No. 5) Coal, Turner Mine Shale, and Canton Shale.

Description At this first stop, we will discuss the overall stratigraphic concepts that have been

applied to cyclic Pennsylvanian strata in the Illinois Basin. Most of the formally named units will

be discussed in detail at later stops rather than here. The Jubilee Creek exposure is the thickest

exposure examined on this field trip, although slumping has covered much of the outcrop since

a previous field trip on the Middle Pennsylvanian of the region (Smith et al., 1970).

The cyclothem, as conceived by Harold Wanless and J. Marvin Weller (1932) and based on

earlier studies by Udden (1912), dominated stratigraphic studies of Pennsylvanian strata in the

Illinois Basin from the 1930s to the 1960s. The cyclothem was formally defined by Wanless and

Weller (1932) as a "series of beds deposited during a single sedimentary cycle of the type that

prevailed during the Pennsylvanian period." A cyclothem thus constituted an unconformity-bounded,

terrestrial-to-marine succession that was based generally on eight units, as previously described

by Weller (1930):

At this exposure (fig. 3-1), the upper part of the Summum

Marine strata-
Cyclothem and most of the St. David Cyclothem are exposed.

Shale with siderite nodules

Marine limestone
The disconformable base of sandstones was selected as

the boundary between cyclothems because Weller (1930,
Calcareous shale

1 931 ^ considered the formation of the unconformity to have
Black fissile shale resulted from diastrophism. At that time, prior to the introduc-

Terrestrial strata: tion of separate time, time-rock, and rock classifications,

Coal obvious angular and erosional unconformities were consid-

Underclay ered as the most suitable features for subdividing geologic

Arenaceous shale time ancl the rock column. Weller (1930) also attributed to

Sandstone unconformable base, diastrophism the transgression of seawater over peat swamps.

It is worth noting that Weller (1 930) also considered the

marine transgressive surface to have merit as a bounding

surface between cyclic units.
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Overlain by Quaternary. A
sandstone bed at the top

was reported by Smith and

others (1970).

Canton Shale (upper),

medium gray to medium
yellowish brown, non-

calcareous, weathered.

12.5 ft

not shown

Canton Shale (upper), gray-

ish black at base progress-

ing to medium dark gray at

top, calcareous; lower and
upper contacts gradational,

basal 0.1 ft fossiliferous

similar to limestone below.

Limestone, nodular bed,

dark yellowish orange to

olive gray, fossiliferous with

brachiopods, bryozoans

with echinoderms; shell

bed often at top.

Canton Shale (lower), gray

black at base to olive black

to olive gray to dark gray at

top, fissile, weakly calcar-

eous at base and top, very

calcareous zone with

siderite nodules at 2.2 ft

above base (= St. David

Limestone?); lower contact

gradational.

in

_ Turner Mine Shale, black,

— very fissile (sheety) at base
to poorly fissile at top, well

~ indurated; basal 0.2 ft

j contains thin wackestone/

j packstone beds and
scattered flat phosphatic(?)

nodules, non-calcareous

i

above base; large scattered

round limestone concretions

occur in lower half in this

interval.

Springfield Coal, black,

lacks shale partings, lower

contact abrupt transition;

upper contact sharp.

Shale, very poorly fissile,

dark gray at base to black

at top, non-calcareous.

7

Claystone, dark olive brown,

poorly indurated, weakly

bedded.

Shale, very dark gray,

weak to medium calcare-

ous, contains large rounded

limestone concretions near

base; upper contact grada-

tional.

Covel Conglomerate, sharp

contacts.

Shale, light gray, medium
fissile, calcareous, slightly

silty, poorly indurated.

Excello Shale, black, fissile.

Limestone, light gray,

grainstone.

Houchin Creek Coal, black,

argillaceous.

Claystone, light gray to

yellowish orange to brown,

non-calcareous, massive,

poorly indurated.

r-»I-I- Strata covered below.

Figure 3-1. Stratigraphic column of strata exposed at Stop 1 . TRU, transgressive-regressive unit. Lithologi-

cal symbols used on the stratigraphic column are explained in figure 3-9. Vertical scale bar equals one foot.
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The cyclothem concept and its application to Pennsylvanian strata in the Illinois Basin parallels

current concepts of sequence stratigraphy. Wanless and Weller's (1932) definition of a cyclothem

emphasized the premise that strata within a single cyclothem were related genetically, having been

deposited within one sedimentation cycle. The boundary separating cyclothems, the disconformity

at the base of the sandstone, was considered to be the most chronostratigraphically significant

unconformity within the succession (Weller, 1930, 1931). Thus, cyclothems are unconformity-

bounded stratigraphic units, defined with criteria similar to those for defining cratonic sequences,

and differing only in scale (Sloss, 1963, 1988). Cyclothems are similar to sequences in that both

can be interpreted to have been deposited between eustatic-fall inflection points (Posamentier

et al., 1988). Cyclothems are unconformity-bounded stratigraphic units that are debatably equivalent

to a depositional sequence. A depositional sequence is defined as a "relatively conformable

succession of genetically related strata bounded at its top and base by unconformities" (Mitchum

et al., 1977; Haq, 1991). The debatable aspect is whether or not all of the units within a cyclothem

are genetically related.

Kosanke et al. (1960) dropped the cyclothem-based lithostratigraphic classification (Wanless, 1956)

because of a perceived requirement that all lithostratigraphic units needed to be differentiated

into formations characterized by gross lithologies. The strongest argument against the use of

cyclothem classification was that the disconformity between cyclothems was generally difficult

or impossible to recognize both in surface and subsurface mapping in areas between incised

valleys or channels. At this exposure (figs. 3-1 and 3-2), Wanless (1957) placed the cyclothem

boundary at the top of the Covel Conglomerate instead of at the base of a sandstone. Details on

the Covel Conglomerate will be discussed at a later field trip stop. A second argument against

cyclothems as the basis for classification was that the base of sandstones was not considered

to be an adequate stratigraphic horizon for mapping structural and economic geology. Kosanke

et al. (1960) also considered the mapping of economically significant beds (coal, limestone,

and shale) to be a major mapping objective. Mapping of these beds was preferred to mapping

the disconformity.

Kosanke et al. (1960) replaced cyclothemic formations with much thicker, key-bed-bounded for-

mations. The perceived gross lithologic differences between most of these formations, however,

were overstated. Although the principal lithology of all the Pennsylvanian formations is shale

(by more than 50%) and although sandstone plus shale constitutes more than 85% of the Penn-

sylvanian rocks, the lithologies that were used to differentiate the formations were the coal and

limestone beds, which constitute only between 3 and 12% of the gross composition. This usage

is inconsistent with the International Stratigraphic Guide (Hedberg, 1976), which prefers that

lithostratigraphic units consist of a specific dominant lithologic type or a combination of dominant

lithologic types (shale and sandstone, in this situation). Although Kosanke et al. (1960) attempted

to define the formations based on distinct differences in internal lithologies, the formations were

bounded by marker beds, consisting of either coal or limestone, and the differences in gross

internal lithologies are more perceived than real. Defining and differentiating formations based

on gross lithologies works well with most sedimentary strata. The use of such formations,

however, is not very feasible for detailed studies of the Middle and Upper Carboniferous of

the Illinois Basin where the strata characteristically are composed of hundreds of mostly thin

lithologic units. The gross lithologically based formations are suitable for regional studies, but

are generally too thick for studies of smaller areas (e.g., 7.5-minute quadrangles).

My studies of Carboniferous strata at various sites in the Illinois Basin indicate, however, that an

alternative exists that is useful from both the mapping and sedimentological perspectives and is
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Figure 3-2. View of the Covel Conglomerate exposed in a cutbank along the tributary adjacent to the park

road. The head of the hammer marks the contact between the conglomerate and the overlying dark shale.

This contact is a relatively smooth surface, although the lithological change is sharp and distinct. The under-

lying contact, however, is noticeably uneven and indicates erosion of the underlying shale bed prior to depo-

sition of the conglomerate. Wanless (1957) placed the boundary between the Summum and St. David

Cyclothems at the top of the conglomerate.

applicable to both regional and detailed studies. It should be stressed that this alternative was
constructed because the unconformable boundaries of cyclothems, as defined by Wanless and

Weller (1932), could not be traced regionally, or even locally, in most of the areas where I have

worked (Weibel, 1988, 1991). The reason that the cyclothems could not be recognized is that

the depositional model of the Wanless and Weller (1932) cyclothem contained a significant

shortcoming (Weibel, 1996). The cyclothem inexplicably contained two significant disconformi-

ties: the disconformity under the basal sandstone and the disconformity marked by the paleosol

"underclay" of the middle portion. ["Underclay" is placed in quotations because not all fine-grained

strata beneath coals are claystones and claystones derived from soil formation are present in

many places without an overlying coal (Hughes et al., 1987)]. In the revised, generalized stra-

tigraphic mode! (fig. 3-3), the traditional basal sandstone disconformity was formed in channels

during regression and valley incision. The "underclay" paleosol simultaneously developed in inter-

vening areas between valleys and channels. The distal equivalent of the disconformity at the

base of the channel-filling sandstone is the disconformity recorded by the "underclay" paleosol.

The differing sedimentological origins of the two types of disconformity constrain, on a regional

basis, their lateral extent; the sand-filled channels generally occur as linear patterns, whereas

the paleosol "underclays" occur in large areas between the channels. "Underclay" units, however,

are generally difficult to recognize, particularly where thick coal beds are absent. After it was deter-

mined that neither the basal sandstone nor the "underclays" were suitable for stratigraphic

control, the marine units were utilized instead (Weibel, 1988, 1991, 1992, 1996; Weibel et al.,

1989). Marine units have long been recognized as widespread key beds in the Middle and Upper

Pennsylvanian rocks of the Illinois Basin (Wanless, 1939). Marine units crop out in many places,

are recognizable on most geophysical logs, are more continuous laterally than sandstone units,

and are more numerous than coal beds in the stratigraphic column. At this site, the marine beds

include black fissile shale (e.g., Turner Mine Shale; figs. 3-1 and 3-4), limestone (e.g., unnamed
limestone above Houchin Creek Coal; figs. 3-1 and 3-5), and gray calcareous shale.
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Figure 3-3. Schematic cross section of Middle Pennsylvanian strata in the Illinois Basin showing several

cycles of sedimentation. The base of coal is the boundary between the "cycles" of Udden (1912). The base

of the sandstone channel is the boundary between cyclothems of Wanless and Weller (1 932) and is equivalent

to a depositional sequence boundary. The base of marine strata is the boundary between transgressive-

regressive units. A, disconformity below coal "underclay" contains a paleosol; B, disconformity in transition

area near channel where deposition and soil formation are intermittent; C, disconformity at base of sandstone

channel; D, marine-flooding surface; TRU, transgressive-regressive unit. Note the large vertical exaggeration.

Modified after Weibel (1996).

Recognizing the value of utilizing the base of the marine strata as a mapping boundary led

toward the informal recognition of the marine-to-terrestrial succession as a useful stratigraphic

unit for mapping the Middle and Upper Pennsylvanian rocks (Weibel, 1988, 1991, 1992, 1996;

Weibel et al., 1989). This succession constitutes a transgressive-regressive unit (figs. 3-1 and

3-3), which is an informal stratigraphic unit consisting of the lithologic units deposited within a

transgressive-regressive depositional cycle. The boundary between successive transgressive-

regressive units is the marine-flooding surface at the base of the transgressive marine strata

(fig. 3-1). These transgressive-regressive units are laterally continuous genetic units that con-

stitute a natural framework for lithostratigraphic classification and for both local and regional

correlations. Transgressive-regressive units fit within a sequence stratigraphic framework

because much of the Upper Carboniferous strata in the basin are characterized by multiple

transgressive and regressive events. Within this framework, depositional sequence boundaries

("underclays" and basal unconformable sandstones) generally alternate vertically with marine

flooding surfaces (fig. 3-1).

Road Log Turn around and retrace the route back to Princeville-Jubilee Road. Turn left

(north). Turn left (west) onto Brimfield-Jubilee Road. Turn right (north) onto Maher Road. Turn

right (east) onto Martin Road. Drive to the end, turn around, and park.
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Figure 3-4. View of the Springfield Coal and
Turner Mine Shale exposed in a cutbank along

the tributary adjacent to the park road. The head
of the upper hammer marks the contact between

the coal and the black, fissile Turner Mine Shale.

This shale, like the Excello, contains large lime-

stone concretions, particularly near the base, but

they cannot be seen in this view. This exposure

of the Springfield Coal displays a thickness and

lack of shale partings that are typical for the area.

The head of the lower hammer marks the con-

tact of the Covel Conglomerate, poorly exposed

here, and the shale-"underclay" succession below

the coal. The contact between the Turner Mine

Shale and the Springfield Coal marks the base
of the succeeding transgressive-regressive unit.

Figure 3-5. View of the Houchin Creek Coal, an unnamed limestone, and the overlying Excello Shale

exposed in the tributary adjacent to the park road. The coal crops out in the water, and its top is marked

by the head of the hammer. The hammer lies across the thin unnamed limestone, which occurs locally at

the base of the overlying, black Excello Shale that contains large, limestone concretions. These large con-

cretions are common at the few exposures of the Excello in the field trip area and at the exposures reported

by Wanless (1957). The base of the unnamed limestone bed marks the boundary between transgressive-

regressive units.
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Stop 2: Martin Road

Property Owner Private.

Location Oak Hill 7.5-minute Quadrangle. NW/4, NW/4, NW/4, Sec. 17, T10N, R6E. Exposures
on east side of southward flowing creek (UTM 259840E, 4526640N).

General Stratigraphy Herrin (a.k.a. No. 6) Coal, containing the "blue-band" parting and
"white top," and the Brereton Limestone.

Description At this stop we examine the boundary between transgressive-regressive units, the

laterally widespread blue-band parting, and the very unusual white-top deposits.

The contact between the Herrin Coal and the overlying calcareous shale/Brereton Limestone
succession is a boundary between two transgressive-regressive units (assuming that the white

top is of non-marine origin). The marine transgression is marked by the thin calcacreous shale

between the Herrin Coal and the overlying Brereton Limestone (figs. 3-6 and 3-7). Weller

(1930) had considered the contact between coal beds and the overlying marine units to be suitable

for differentiating cyclical units (equal to formations). Because he (incorrectly) thought that

marine beds do not succeed all coals in most areas, this boundary was deemed not satisfac-

tory for use throughout the Pennsylvanian column. Most coal beds in the Illinois Basin, however,

are succeeded by marine strata and, particularly in the Upper Pennsylvanian, where coal beds
are very thin or absent, marine strata occur more commonly than coal in the stratigraphic column.

In this area of Peoria County, the lithology of the marine strata overlying the Herrin Coal is later-

ally variable. At this site, the coal and the white top are succeeded by marine strata consisting of

the calcareous shale and the Brereton Limestone. About 0.25 mi to the northeast, the coal crops

out in a ravine where, on the east side, the succeeding marine bed is the Brereton Limestone,

and, to the west (a distance of about 50 ft), the coal is succeeded by the black, fissile Anna Shale

and the Brereton is absent. Outcrops about 1 mi to the west-southwest display a similarly

striking lateral variation, but are not as well exposed, and the outcrops are farther apart. White-

top deposits are absent at both of these sites.

The environments of deposition of the apparently laterally diverse marine strata are not well

understood. Heckel (1977, 1986) has advocated that differences in depth of water and oxygen
levels in the water are the primary factors in the deposition of the anoxic black shales to oxic

gray limestone. An opposing view was offered by Merrill (1975) who interpreted the lithologic

changes to be the result of lateral facies changes in contemporaneous strata. These interpreta-

tions are worth comparing with a study by Smith et al. (1970) of a highwall exposure from the

Banner Mine (now closed) in Fulton County. At the Banner Mine, the Colchester Coal (a.k.a. No. 2)

bed broadly undulates with up to 20 ft of vertical relief. The undulation apparently was a reflec-

tion of the depositional topography. The succeeding marine strata consist of the Mecca Quarry

Shale (black, fissile) and the Oak Grove Limestone. At the topographic highs, the Oak Grove
locally occurs as a 5-ft thick lens, and the Mecca Quarry Shale thins significantly and may be
locally absent. Similar situations in this area may be responsible for the lateral variations in the

marine strata above the Herrin Coal.
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The "blue band" is a miner's term

for a shale parting that occurs

within the Herrin Coal throughout

most of the Illinois Basin. This

parting generally occurs in the

lower one-third to one-half of the

coal seam and is up to 0.25 ft

thick in this area (figs. 3-6 and

3-8). The origin of the blue-band

parting has not been clearly estab-

lished. Hoehne (1957) and
Wanless (1957) speculated that

the parting could be due to a wide-

spread volcanic ash deposit. Back

(1986), however, suggested that

the parting is of a detrital, non-

volcanic origin because of the

absence of mineralogical data

indicative of a volcanic ash fall.

Wanless (1964) later suggested

a fluvial origin for the parting.

Johnson (1972) suggested that

the parting thickens toward the

Walshville Channel, a major flu-

vial deposit in southern Illinois.

DeMaris et al. (1983) reported

that the parting thickened toward

the channel from about 0.1 ft to

nearly 2 ft thick. Rare earth ele-

ments and clay mineralogy indi-

cate a mineralogical composition

that is similar to other shale part-

ings in the coal and to the ash

content of the coal (DeMaris et

al., 1983; Hughes et al., 1987).

Johnson (1979), as part of a pet-

rographic study of the Herrin

Coal, interpreted the parting to

be the result of a minor trans-

gressive event that temporarily

drowned the coal swamp. Clays

derived from terrestrial sources

were dispersed throughout the

coal swamp by gentle wind-driven

waves. After a minor regression,

coal swamp conditions were
re-established.

Shale, calcareous, light gray at top (0.6 ft thick) and
base (0.1 ft thick), dark yellowish orange in center,

poor to medium fissile, poorly to medium indurated,

contains scattered light tan-brown calcareous
nodules (0.10-0.15 in diameter).

Limestone, massive, light olive-gray to gray, fossil-

iferous wackestone; large bioclasts of brachiopods

and pelmatazoan columnals common; upper con-

tact sharp and irregular, lower contact sharp and
undulating.

: Shale, medium gray to light olive-gray, fissile,

calcareous, poor to medium induration; lower

contact rapidly transitional.

Coal clasts in claystone matrix, thickness variable,

coal, black, vitreous, angular; clasts range from

pebble size to nearly undisturbed boulder size;

claystone, light gray to greenish gray, non-

calcareous to weakly calcareous, weakly bedded
(color banding) (white top).

Coal, black, vitreous, laminated to thicker bedded;

upper portion contains nearly vertical, claystone-

filled dikes; upper contact very irregular, lower

contact flat and sharp.

Shale, black, non-calcareous, very weakly bedded,

poorly indurated.

Coal, black, vitreous, flat and sharp contacts.

Shale, black, non-calcareous, very weakly bedded,

poorly indurated.

Coal, black, vitreous, flat and sharp contacts.

Claystone, light brownish gray at base to dark gray

at top, massive, non-calcareous, soft (blue band).

Coal, black, vitreous, laminated to thicker bedded;

upper contact sharp.

:-»»I-Z-Z-I-~-I- "Underclay" claystone, non-calcareous, weakly

~I-Z-Z>>>5>>>: bedded (color banding), medium gray to medium
dark gray with dark yellowish brown streaks, poor to

medium indurated; upper contact sharp and slightly

irregular due to deformation (listric deformation

planes continue up into lower portion of coal).

Figure 3-6. Stratigraphic column of strata exposed at Stop 2. The
formally named units at this exposure are the Herrin Coal and the

Brereton Limestone. A boundary between transgressive-regressive

units is at the base of the calcareous shale between the coal and

the limestone. The Covel Conglomerate is described at Stop 4.

See Figure 3-9 for explanation of lithological symbols used on the

stratigraphic column. Vertical scale bar equals one foot.
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Figure 3-7. View of the white-top deposits in the

upper part of the Herrin Coal. The top of the

hammer marks the contact between the coal and

the overlying calcareous shale and is a boundary

between transgressive-regressive units. The rock

cropping out a short distance above the hammer
is the Brereton Limestone. Note the chaotic pat-

tern of the distribution of the white-top claystone

and the coal.

Figure 3-8. View of the middle part of the Herrin Coal

bed. The blue band is exposed just above the

hammer head.

"White top," another miner's term, refers to discontinuous deposits, ranging in lithology from clay

to sandy shale to calcareous sandstone, that occur at the top or within the upper part of the Herrin

Coal seam (Wanless, 1957). At this site, the deposits consist of very gray claystone (figs. 3-6 and

3-7). The white top appears to thicken at the expense of the coal bed. Wanless (1957) speculated

that the deposits were the result of fluvial erosion and deposition during the late stage of the

coal swamp environment. This interpretation was based on limited map data suggesting that the

distribution of the white top resembled that of fluvial channels. Wanless also noted that the white

top occurs where the succeeding Brereton Limestone is present and the Anna Shale is absent.

Examination of the white top at this locality indicates that the coal is brecciated, suggesting that

deformation occurred after compaction and early dewatering of the accumulation of peat. The
association with a vertical dike in the underlying coal, filled with white-top clay, suggests a more

complex interpretation, perhaps a combination of late stage dewatering and fluvial processes.

Damberger (1970) speculated that earthquake activity that occurred just after deposition of the

coal material was associated with the formation of white top.
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Road Log Retrace the route back to Maher Road and turn right (north). Turn right (east) onto

Parks School Road. Turn right (south) onto Savage Road. At 2.1 mi from the intersection, park

along Savage Road between the two yellow triangular no passing zone signs.

Stop 3: Jubilee Lodge

Property Owner State of Illinois.

Location Oak Hill 7.5-minute Quadrangle. SW/4, SE/4, NE/4, Sec. 17, T10N, R6E. Outcrops

along southeasterly flowing tributaries to unnamed creek. Sandstone-dominated cutbank

(UTM 261055E, 452591 5N) will be examined briefly prior to study of the strata shown in figure

3-9 (UTM 261025E, 4525970N).

General Stratigraphy Basal sandstone of cyclothem; eroded clasts of the Herrin Coal; lower

Canton Shale.

Description At two small outcrops, we will examine the basal sandstone and the disconformity

that Wanless and Weller (1932) used to separate cyclothems. At both outcrops we will examine
sandstones that probably correlate to the Copperas Creek Sandstone of the Sparland Cyclothem

(Wanless, 1957).

The Copperas Creek at this exposure is a fine- to coarse-grained, dusky yellow to light brown,

well-sorted, micaceous, quartz-dominated sandstone. The bedding is variable; it appears massive

in some places, but generally is composed of planar beds ranging from very thin to medium in

thickness. The lithology at this outcrop is quite similar to the Copperas Creek described by Wanless

(1957). According to Wanless, the bed ranges from 3 to 27 ft thick and averages about 10 ft thick.

He reported that the sandstone "cut out" the Brereton Limestone and the Anna Shale but not

down into the Herrin Coal. In this area, the sandstone likely "cuts out" the Herrin Coal. Based on

exposures of the Herrin, mostly to the north and to the west, the extrapolated cropline of the coal

bed is within this drainage. Instead of the coal cropping out, however, the outcrops are dominated by

sandstone, which is less prominent in the areas where the coal exposures occur. The second

exposure visited at this stop offers more evidence for the hypothesis that coal is "cut out" by the

sandstone in this drainage.

At the second exposure (figs. 3-9 and 3-10), the lithology of the basal sandstone of the Sparland

Cyclothem (Wanless, 1957) is very unusual. The bounding sandstones of cyclothems commonly
have conglomerates in the basal portion (Weller, 1930; Wanless, 1957). The lithology exposed

here is very unusual in that numerous clasts of coal occur in the conglomerate and two lithologi-

cally distinctive conglomerates are present. The basal portion of the channel fill is occupied by a

lens of calcareous conglomerate. The silt and sand matrix ranges in lithology from quartz domi-

nated to carbonate dominated. The clasts are variable in both shape and size, and they include

clasts of coal and limestone. Bedding is notably absent within this conglomerate. The overlying

conglomerate, however, is bedded and is a non-carbonate stratum. The matrix of this conglom-

erate is a poorly sorted, silty sandstone. Clasts consist of rounded, pebble-sized sideritic (?) nodules

and large coal clasts. The coal clasts are lath-shaped in cross section and are slightly rounded

at the corners. These coal clasts are remarkable because of their large size, the absence of severe

deformation features, and displaying imbricate bedding. The upper conglomeratic layer is over-

lain by a coarse-grained sandstone, although in places at the outcrop the units are interbedded.
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Regression-induced incision by fluvial

systems into the underlying strata appar-

ently eroded the previously deposited,

semi-lithified limestone deposits and peat

of the coal swamp. Water-worn fossil

fragments in the basal calcareous con-

glomerate suggest that the source of the

sediments in this stratum was a proximal

carbonate deposit. The remarkable preser-

vation of these coal lenses and the occur-

rence of undisturbed coal in the nearby

area suggest that the coal was trans-

ported only a short distance. The chan-

nel eroded down through the marine

strata (Brereton Limestone/Anna Shale),

the Herrin Coal, and the "underclay." The

thin, dense limestone that occurs just

beneath the channel may be equivalent to

the limestone in the middle of the Canton

Shale of the St. David Cyclothem (see

Stop 1). Worthen (1873) had earlier rec-

ognized similar unconformities in Peoria

County, describing sandstone-filled chan-

nels (probably the Vermilionville Sandstone

of the Brereton Cyclothem) that had

eroded down into and through the Spring-

field Coal of the St. David Cyclothem.

In the depositional model of a cyclothem

(Wanless and Wright, 1978), the basal

unconformity of the cyclothem formed as

marine waters regressed, allowing wide-

spread erosion and subsequent deposi-

tion as clastic material was eroded from

terrestrial source areas and transported

toward the basin center. The importation

of clastic sediments diminished gradually

and eventually ceased, allowing the next

stage of the depositional cycle to occur

(widespread deposition of claystone

and mudstone and the formation of the

"underclay"). As explained at Stop 1,

the separation of the development of the

Figure 3-9. Stratigraphic column of strata exposed

at the second outcrop of Stop 3 and explanation

of lithological symbols. The boundary of the cyclo-

them is at the base of the channel. Vertical scale

bar equals one foot.

0--^0-HlQ

-V-y'T_L _W

Sandstone, coarse- to very coarse-

grained, subangular, yellow-brown to

medium light gray, quartzose, micaceous

and calcareous, with common coal

clasts and carbonized plant fragments,

planar thin bedded; lower contact sharp

to interbedded.

Conglomeratic silty sandstone, light gray

to yellow brown, very fine to fine sand

matrix, clasts composed of pebble-size,

rounded siderite? nodules and large,

lath-shaped coal; sharp and irregular

lower contact.

Conglomerate, light gray to light brown,

massive lens-shaped bed; calcareous

and quartz matrix comprising silt, sand,

mica, and bioclasts of pelmatozoans,

brachipods, and gastropods; poorly

sorted clasts consist of coal, limestone,

shale, siltstone.and sandstone; lower

contact sharp and disconformable.

Limestone, medium dark gray, micritic,

dense.

~ _ Canton Shale (lower), medium gray to

dark gray, non-calcareous.
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coal

black shale, sheety

black shale, fissile

shale

claystone

limestone

calcareous shale

conglomerate, silty sandstone matrix

conglomerate, calcareous matrix

argillaceous limestone

conglomerate

sandstone
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Figure 3-10. View of the strata exposed at the second outcrop of Stop 3. The massive, calcareous con-

glomerate occupies the base of the channel fill lens and unconformably overlies the thin limestone. The
darker lenses within the upper conglomeratic silty sandstone (between the limestone bed and the

overlying planar-bedded sandstone) are flattened clasts of coal.

basal unconformity and the "underclay" into two distinct successive events is a significant draw-

back in the cyclothem depositional model. Disconformity-bounded sandstones deposited in a

fluvial regime during a marine regression are unlikely to be basin-wide, whereas the laterally

equivalent paleosol disconformity (commonly occurring as the "underclay") is more liikely to be

basin-wide. Thus, this discomformity between cyclothems formed as valley incision developed

during regression and strand lines of fluvial/deltaic environments prograded seaward.

Wanless (1957) apparently was able to map cyclothems in areas where the basal sandstone

units are relatively widespread, and both natural and manmade exposures were abundant at the

time of mapping. The usefulness of cyclothems, whether for regional or detailed studies, using

both the basal sandstone and the "underclay" disconformities, is restricted in the Illinois Basin

primarily because most of the data must come from drilling samples and geophysical logs rather

than surface outcrops. Under these conditions, paleosols generally are difficult to recognize,

particularly in the absence of thick coal.

Road Log Continue south on Savage Road. Turn left (east) onto Brimfield-Jubilee Road. Turn

right (south) onto Princeville-Jubilee Road. Turn right (west) at entrance road to Jubilee College

State Historical Site and enter site for lunch.
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Return to Princeville-Jubilee Road and turn left (north). Turn right (east) onto Grange Hall Road.

Turn right (southwest) onto Voorhees Road. At 0.7 mi from intersection, park along road just

before bridge crossing Fargo Run.

Stop 4: Voorhees Bridge

Property Owner Private.

Location Oak Hill 7.5-minute Quadrangle. NW/4, NW/4, SW/4, Sec. 31 , T10N, R7E. The com-

posite stratigraphic section (fig. 3-11) is derived from data measured from both upstream (UTM
267840E, 4520460N) and downstream (UTM 267555E, 452071 5N) bank exposures. We will

examine only exposures upstream from the bridge, mostly in the stream bed near the bridge

(UTM 267700E, 4520600N).

General Stratigraphy Houchin Creek Coal, Excello Shale, Covel Conglomerate, and
Springfield Coal.

Description The primary stratum to be studied and discussed at this stop is the rather enig-

matic Covel Conglomerate. The Covel Conglomerate was named by Willman (1939) for strata

exposed along Covel Creek, south of Ottawa, Illinois. The unit occurs at about the same
stratigraphic horizon in both northern Illinois and Peoria County. In the Peoria area, the Covel

occurs just below the "underclay" unit of the Springfield Coal, and, in the type locality area, occurs

beneath the Turner Mine Shale. This black shale generally succeeds the Springfield Coal, but in

northern Illinois the coal is absent (Willman and Payne, 1942). The Covel has been described as

ranging from a pebble conglomerate to a pebbly coarse-grained sandstone (Willman, 1939; Willman

and Payne, 1942). Willman (1939) reported pebbles as large as 0.5 ft in diameter. In the northern

Illinois area, the dominant lithology of the clasts is limestone, but calcareous shale and siltstone

pebbles are also present. A variety of marine fossils (brachiopods, pelmatazoan columnals, gas-

tropods, pelecypods, bryozoans, trilobites, and conodonts) have been reported to occur mostly

within the matrix of the conglomerate. Algal growths have been reported at several localities.

For the most part, the Covel Conglomerate in Peoria County appears to have similar character-

istics (thickness, clast size range, composition, and sorting). A major difference is that the fossil

content of the Covel at this locality is dominated by plants. Marine fossils are relatively rare but

include graptolites, although the source of these fossils is unknown. Calcareous laminae of an

unknown origin are present and appear to cover the upper surface of some clasts and continue

downward into the matrix.

Both Willman and Payne (1942) and Wanless (1957) placed the Covel Conglomerate at the top

of the Summum Cyclothem. The placement is somewhat perplexing because the succeeding

St. David Cyclothem lacks a basal sandstone, and the Covel resembles, in part, the type of con-

glomerate that typically occurs in the basal sandstone (e.g., Stop 3). Wanless (1957) reported

that a few transported fossil fragments indicate that the bed belongs to the underlying Summun
Cyclothem rather than as the basal conglomerate of the St. David Cyclothem. This paleontologi-

cal correlation should probably be considered suspect because the fossils are water-worn and
fragmented, and there is a general lack of supporting data.

.

Willman and Payne (1942) explained that the conglomerate was formed from previously consoli-

dated pebble material derived from a local source and transported a relatively short distance. A
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thin band of laminated limestone was
probably deposited by algae over the

surface of the bed after the conglomerate

was deposited. In a brief study, Hensler

and Malone (1998) interpreted the Covel

as representing a marine transgressive

lag deposit. Examining the conglomerate

from the perspective that transgressive-

regressive units dominate this stratigraphic

column, such a transgression should

have been preceded by a regressive

event. Strata beneath the Covel, how-

ever, record the transgression of marine

waters over the Houchin Creek coal

swamp along with a probable increase of

terrestrial clastic sediment input and less

marine influence in the shale immediately

under the Covel. The basal contact of the

conglomerate appears to be erosional;

the surface is generally undulating, the

lithologic transition across the contact is a

sharp contrast, and the Covel locally cuts

down into the underlying strata. It is

possible that the Covel records both a

regression and a transgression. If so,

such events should also be reflected in

strata of this interval in other parts of the

Illinois Basin, but the corresponding

strata have not yet been identified. In

addition, the source of the calcareous

clasts is unknown; the lithology is not

common in the bedrock of this area.

Road Log Continue south on Voorhees

Road. Turn right (west) onto US-150.

Turn left (south) onto Maher Road. Turn

left (east) onto Illinois Highway 8. Turn

right (south) onto Eden Road. Turn left

(east) onto West Cottonwood Road. At

1 .7 mi from the intersection, park along

the road.

Springfield Coal, black; lower contact

sharp, upper part eroded.

ii isniii iiiii iiffl i iin

Shale, gray to dark gray to dark
brown at top; poorly fissile, non-

calcareous.

Shale, very dark gray, weak to

medium calcareous; contains large

rounded limestone concretions near

base; upper contact gradational.

Covel Conglomerate.

Shale, light olive-gray to dark brown,

non-calcareous.

Excello Shale, black, fissile.

Limestone, gray, fine-grained.

Claystone, gray-brown, weakly

calcareous.

Houchin Creek Coal, black, dull.

Claystone, greenish gray to light

olive-gray to pale yellow-brown; non-

calcareous; generally massive, sharp

upper contact.

Figure 3-11. Stratigraphic column of strata exposed
along Fargo Run at Stop 4. The boundary of the cyclo-

them is at the base of the channel. TRU, transgressive-

regressive unit. The Covel Conglomerate is described in

the text for this stop. Lithological symbols used on the

stratigraphic column are explained in figure 3-9. Vertical

scale bar equals one foot.
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Stop 5: Cottonwood Road Strip Pit

Property Owner City of Peoria. Permission of the lease holders is required to visit this site.

Location Hanna City 7.5-minute Quadrangle. SE/4, SW/4, NE/4, Sec. 27, T9N, R6E. Strata

(fig. 3-12) are exposed at the edge of an abandoned strip-mine pit (UTM 261855E, 4512970N).

General Stratigraphy Danville Coal and

Farmington Shale.

Description At this outcrop, we will

examine the nature of the transition from

terrestrial sedimentation to marine sedimen-

tation (from the top of the coal bed to the

marine-flooding surface). Weller (1930) had

interpreted the succession of marine strata

over coal to be caused by a subsidence-

driven marine transgression. He considered

the marine flooding surface to have merit

as a mapping (formational) surface because

of its diastrophic (tectonic) origin. Weller,

unfortunately, did not describe in detail the

characteristics of the terrestrial to marine

transition because he selected the basal

sandstone unconformity as the mapping

boundary. Presumably, he also considered

the former transition to record an uncon-

formity. The strata cropping out at this site

display an unconformity at the base of the

marine strata (figs. 3-12 and 3-13). Here, a

thin layer of poorly indurated black to gray

fissile shale that succeeds the Danville Coal

is overlain, with a small but perceptible

angular unconformity, by a black, sheety

shale that records the marine transgression.

Marine fossils have not been found in the

Figure 3-12. Stratigraphic column of strata exposed

at Stop 5. The boundary between transgressive-

regressive units is at the base of the black sheety

shale, as indicated by the arrows. The dark shale

and claystone units succeeding the Danville Coal

form a small lens-shaped deposit that is uncon-

formably succeeded by the black shale. The base
of the latter shale represents the initial marine

transgression over the largely terrestrial underly-

ing deposits. Lithologica! symbols used on the

stratigraphic column are explained in figure 3-9.

Vertical scale bar equals one foot.

Shale, gray to brown, fissile, non-

calcareous; contains small brown
siderite nodules.

Shale, black to dark gray, fissile; non-

calcareous; upper contact gradational.

Shale, black, sheety; upper contact

gradational.

Claystone, gray to dark brown, non-

calcareous, weakly bedded, poorly

indurated; upper contact sharp.

Shale, very dark brown to black,

bituminous, weakly calcareous, poorly

fissile and bedded; upper contact

gradational.

Danville Coal, black, vitreous, contains

few, small, thin clay laminae; upper

contact rapidly transitional.

Shale, poorly fissile, poorly indurated,

non-calcareous, gray to medium dark

gray to gray to nearly black at top; color

generally darkens upward. Basal

portion oxidized to ochre to rust-brown,

contains scattered coalified roots up to

0.15 ft in diameter.

Claystone, medium gray to gray, weakly

calcareous, weakly bedded, medium
induration, scattered gray granule-size

calcareous nodules; gradational upper

contact.
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Figure 3-13. View of the strata exposed at Stop 5. The dark shale and claystone units constitute the

lens-shaped deposit between the Danville Coal below and the black sheety shale above. The hammer lies

on the lens-shaped bed. Bedding planes within this lens form an angular unconformity with beds of the

overlying black shale, which are particularly well displayed near the left end of the lens.

black to gray shale; it probably represents a depositional environment of fresh to brackish water

that flooded the coal swamp prior to invasion of marine water.

A few other studies have reported unconformable relationships between coal beds and the

marine-flooding strata. DeMaris and Nelson (1990) suggested that a relatively short hiatus had

occurred at the contact between the Herrin Coal Member and the overlying marine strata in the

Carbondale Formation in southwestern Illinois. During a transgression, sediments commonly are

reworked at the water-substrate surface, leaving a transgressional lag over a ravinement surface

at the base of marine strata. Transgressional lags have been described by Zangerl and Richardson

(1963), Palmer et al. (1979), Weibel (1988, 1991), and Weibel et al. (1989). Transgressive lags

are less widespread in calcareous strata, but Scheihing and Langenheim (1985) described abraded

fragments of marine fossils in a basal marine stratum of the Shumway cyclothem. Near certain

large channels, DeMaris et al. (1983) found that the coal was overlain by nonmarine to marginal

marine shale, the top of which has been subjected to submarine erosion, followed by deposition

of marine shale.

Road Log Continue east on West Cottonwood Road. Turn left (north) onto Murphy Road. Turn

right (east) on IL-8. Turn left (north) onto Kickapoo-Edwards Road. Cross over I-74 and turn left

and park at Jubilee Cafe. Coffee break.

Leave the cafe parking lot and turn left (north). Enter Kickapoo village; turn right (east) onto

US-150. Just east of Kickapoo, the route gradually ascends the outwash plain proximal to the

Buda Moraine, part of the Bloomington Morainic system. Cross over IL-6 and enter Peoria City

limits. Turn right (south) onto Big Hollow Road. At 1 .2 mi from IL-6, park on the abandoned road

pavement on the left (east) side of road, just north of the bridge over Big Hollow Creek.

90



Stop 6: Big Hollow Creek

Property Owners City of Peoria

and private.

Location Dunlap 7.5-minute

Quadrangle. SW/4, NW/4, SE/4,

Sec. 13, T9N, R7E. Strata (fig. 3-14)

are exposed in a cutbank on the

west side of Big Hollow creek

(UTM 27641 5E, 4515105N).

General Stratigraphy Springfield

Coal, Turner Mine Shale, and
Canton Shale.

Description This outcrop displays,

from the base upward, an overall

succession of depositional environ-

ments from terrestrial to marine. The

exposure is similar to the other

outcrops of the interval examined
at previous stops, except that it

contains an anomalous sequence

between the Springfield Coal and

the Turner Mine Shale (fig. 3-14).

The argillaceous limestone-black

shale-gray claystone interval (fig.

3-15) succeeding the coal was not

reported by Wanless (1957) in his

study of four 1 5-minute quadrangles

just to the southwest. In that study

area, the coal is overlain by the black

Turner Mine Shale. Wanless did

report a single occurrence of alter-

nating laminae of coal and marine

fossils at the top of the coal near

Cuba in Fulton County, but those

strata probably are the local record

of the initial marine transgression.

Another possibility is that those

strata could extend laterally in the

subsurface for some distance to

the southeast.

The three-bed interval at this site,

which pinches out at the upstream

end of the exposure (fig. 3-15),

--JCanton Shale, dark gray to very dark gray, fissile,

~-Jj noncalcareous.

H Turner Mine Shale, black, sheety; upper contact

jgradational.

'Turner Mine Shale, black, poorly indurated,

jfissile, contains small (0.1-0.3 ft diameter)

calcareous (sideritic?) nodules.

i
Claystone, light gray, massive; top 0.1 ft

|
weathered and oxidized; upper contact rapidly

Igradational.

.'Shale, black, bituminous, fissile, non-calcareous;

iupper contact rapidly gradational.

Limestone, dark gray, very fine grained,

argillaceous, fossiliferous with mostly brachipods,

generally medium induration, contains well-

indurated limestone nodules; upper contact

rapidly transitional.

Springfield Coal, black, vitreous; lower contact

sharp and usually submerged by creek water.

"Underclay," submerged by creek water, not

described.

Figure 3-14. Stratigraphic column of strata exposed at Stop 6.

At this exposure, there is a minor transgressive-regressive unit

(dashed arrow line at left), which occurs between the Springfield

Coal and the Turner Mine Shale. These beds pinch out at the

upstream end of the outcrop where the Turner Mine Shale
directly overlies the coal. Lithological symbols used on the

stratigraphic column are explained in figure 3-9. Vertical scale

bar equals one foot.
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indicates that marine waters transgressed over

the coal swamp, depositing initially the argilla-

ceous limestone followed by the overlying black

shale. Bituminous layers within this black shale

(deposition of terrestrial plant material) and the

succeeding massive claystone indicate that a

shallowing event occurred (minor regression).

Marine fossils have not been observed in the

claystone, suggesting that it was deposited in

either a non-marine or, at least, a marginal

marine environment. Evidence for terrestrial

deposition has yet to be recognized.

For the most part, I have regarded Pennsylvanian

marine transgressions as large, significant events

that rapidly overwhelmed the pre-existing depo-

sitional environments, which was, in many cases,

the coal swamp environment. This viewpoint is

undoubtedly simplistic, although Heckel (1996)

also advocated rapid, widespread marine trans-

gressions for Pennsylvanian cyclothems. The
strata exposed may be the record of a step-wise

transgression marked by the initial transgres-

sion depositing the limestone; a minor regres-

sion recorded by the black, bituminous shale

and claystone; followed by a second, more
extensive marine transgression that deposited

the Turner Mine Shale (fig. 3-14). The pinching

out of this three-bed interval and the lack of

reported occurrences of this interval at other

exposures of either the Springfield Coal or the

Turner Mine Shale suggest that the factors con-

trolling its deposition are of local rather than of

basin-wide extent.

Figure 3-15. View of the strata exposed at Stop 6.

The "underclay" crops out at the level of the dry

creek bed. The hammer head rests upon the

contact between the Springfield Coal and the

argillaceous limestone. The contact between the

bituminous black shale and the succeeding clay-

stone is just above the hammer handle. In most
places, the Turner Mine Shale, which overlies

the claystone, generally marks the initial marine

transgression within this succession. At this site,

however, a minor transgressive-regressive event

occurred, depositing the three beds, which pinch

out to the right, between the coal and the Turner

Mine Shale.

This last field trip stop offers an excellent oppor-

tunity to review and summarize the stratigraphic

concepts that have been presented. The depo-

sitional model of Wanless and Weller's (1932)

cyclothem can be revised and improved by recognizing that, during the regressive phase (retreat

of marine water), fluvial erosion of the newly exposed land surface and the initiation of soil-

forming processes occurred simultaneously. The traditional basal sandstone disconformity of the

cyclothem, thus, is chronologically equivalent to the "underclay" paleosol that commonly occurs

beneath coal beds (basal unit; figs. 3-14 and 3-15). This revision of the cyclothem model, how-

ever, still does not make the cyclothem an appropriate stratigraphic mapping unit because of the

difficulty in identifying its boundaries from subsurface data. An informal unit, the transgressive-

regressive unit, a lithological succession bounded by marine transgressive surfaces, is a more
practical mapping unit for cyclothemic strata in the Illinois Basin because the marine lithologies

are more readily recognized in well samples and geophysical logs. In addition, marine beds are
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present in most, if not all, of the Pennsylvanian cyclothemic strata. Coal beds are readily mappable

as key beds only in the Middle Pennsylvanian; they are either absent or very thin in most other

parts of the Pennsylvanian System. Mapping of the transgressive-regressive units may lead to a

better understanding of the sedimentary history of the basin because these units and the related

cyclothems are both based on the alternating transgressive and regressive character of the strata.

Because of this alternation, the disconformable surface and the marine transgressive surface

also occur in an alternating pattern in the stratigraphic column.

Road Log Continue southeast on Big Hollow Road. Turn left (north) onto Glen Hollow Road.

Turn right (southeast) onto War Memorial Drive (US-150). Turn right onto entrance ramp to I-74

east. Continue on I-74 east to Bloomington-Normal. End of log.
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Geology of the Vermilion River Gorge,
La Salle County, Illinois

Stephen J. Simpson,
Highland Community College, Freeport

INTRODUCTION

The lower Vermilion River near Oglesby, Illinois, has carved a spectacular gorge near its conflu-

ence with the Illinois River. In places, the stream lies nearly 200 ft below the till plains of La Salle

County; at several localities, steep bedrock exposures are as high as 100 ft. Abundant exposures of

bedrock in the streambed (in some cases producing significant rapids), a steep gradient (7.5ft/mile

in the section described here), and a nearly V-shaped valley profile suggest that this stream is

still actively downcutting. The local base level was significantly lowered by the downcutting of

the Illinois River valley during the drainage of late Pleistocene proglacial lakes, and the Vermilion

River has yet to achieve a graded profile.

The dynamic geomorphic processes in the Vermilion River gorge make it an outstanding place

to investigate fluvial geomorphology. Furthermore, this river has carved its canyon through some
of the most interesting and economically valuable bedrock strata in the state, which makes this

area an ideal site to study several other aspects of Illinois geology as well. The excellent expo-

sures of Pennsylvanian strata (the Carbondale Formation, in particular) are some of the most

complete natural exposures of these units anywhere. The Ordovician Galena-Platteville Dolomite

and St. Peter Sandstone also outcrop in or near the stream valley, and there are several

exposures of the Pennsylvanian/Ordovician unconformity. Structurally, the area is of interest as

it lies along the Peru Monocline, the steeply dipping southwestern limb of the La Salle anticlinorium

(Nelson, 1995).

Three locations in the gorge are traditional favorites for field trip stops: (1) the mouth of Dells

Creek in Matthiesson State Park, where beds of Galena-Platteville Dolomite dip at angles of

nearly 30° into the bed of the Vermilion River (Nelson and Malone, 1997); (2) the high cut bank

located in the Margery C. Carlson Nature Preserve, on the southwestern side of the river approxi-

mately 0.5 mi (0.8 km) downstream from the Illinois Highway 178 bridge, where bluffs of up to

45 m in height expose portions of several cyclothems in the Carbondale Formation (Trask, 1987);

and (3) the canoe/kayak launch site at the Lowell Bridge on IL 178, where a patchy channel fill

deposit of sandstone and shale above the Galena-Platteville Dolomite marks the Pennsylvanian/

Ordovician unconformity (Nelson et al., 1996).

At the first two localities, the physical challenges of reaching the interesting geology have some-
times caused problems for field trip planners. At Matthiesson State Park, the river location can

be reached after a 0.8-km hike on a well-maintained trail, followed by 100 m or so of scrambling

down the steep slope to the river. At the Carlson Preserve site, the trail is a little longer and less
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manicured, and the steep banks leading down to the river make extensive exploration of the

exposure difficult and dangerous.

Viewing these sites from the river has the advantage of allowing the viewer to go directly to the

base of these spectacular exposures in relative comfort. However, the Vermilion is generally

regarded as one of the most challenging Whitewater streams in the state, and the trip is definitely

not recommended for novice canoeists. Rafts are much more forgiving of paddler errors and should

safely carry trip participants through the gorge. However, two sites—Wildcat Rapids and the dam
at the Lone Star cement plant—require particular care. On the day of the field trip, after assessing

water levels and other factors, trip leaders will advise the group as to the best way to negotiate

these areas.

This field guide is for a one-day rafting trip down the Vermilion River. It is geared mainly toward

K-16 geoscience educators. The mileage and locations of the sites discussed in this field guide

are shown in figure 4-1. "Right" and "left" bank designations are from a downstream-looking

vantage point.

RIVER LOG AND SITE DESCRIPTIONS

Mile (Kilometer 0)

Begin the trip at the stream bank outcrop of the Galena-Platteville Dolomite just downstream of

the north abutment of the IL 178 bridge over the Vermilion River. This site is a favorite put-in site

for rafters on the river. The shallow rocky rapids that extend from above the bridge to the first bend
downstream from the put-in is known as the Lowell Bridge Rapids. The river is flowing over bed-

rock here, and in low water the exposure of rock in the riverbed is quite spectacular. The beds of

dolomite here dip to the southwest at 5-10°, so a downstream traveler gradually moves up-

section. At the first bend (Mile 0.5), the angle of dip increases dramatically as the Galena-

Platteville strata submerge beneath the riverbed at the Pennsylvanian/Ordovician unconformity.

At the put-in locality, Pennsylvanian sandstone and shale can be seen unconformably overlying

the Ordovician rocks. This deposit has been described as a channel deposit (Nelson et al., 1996),

but the apparent steepness of the "paleochannel" walls and the location near the axis of the

La Salle anticline have also led to an interpretation of this deposit as a structural feature. It

may be a small-scale graben or a filled paleokarst feature that formed as solution activity

widened a pre-Pennsylvanian fracture (Stephen Marshak, University of Illinois, personal com-
munication).

Mile 0.5 (Kilometer 0.8)

Stop 1 : Lowell Bluff Section Floating downstream from the put-in, notice the gentle westward
dip of the well-exposed Galena-Platteville Dolomite at the base of the old bridge abutments on
the right. In low water, this stretch can be an intricate, shallow maze with a few navigable channels

through breaks in the dolomite ledges. In high water, this stretch is a fairly continuous choppy
rapids, and a landing on the left bank can be tricky. A few eddies are usually formed by rocky

projections along the bank, and a safe landing can be made in one of these eddies.
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Figure 4-1. Map of the Vermilion River gorge showing field trip localities and mileage.
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The high bluff along the south and west banks here was described by Cady (1919), Smith et al.

(1970), and Trask (1987) in the Geological Society of America Centennial Field Guide Series

(fig.4-2). The lower portion of the section (Tonica Cyclothem) is well exposed and easily acces-
sible here, and the continued erosion of this cutbank by the river ensures that fresh exposures
will always be available for study. If not covered by slump material, the Colchester Coal can
usually be seen here just a few feet above the river. The coal is about 1 m thick here, and the

shale just above the coal contains abundant pyrite nodules. Approximately 3 m of Francis Creek
Shale separate the Colchester from one of the most distinctive units in the area, the Mecca Quarry
Shale. The Colchester, Francis Creek Shale, and Mecca Quarry Shale can be seen at numerous
locations along the next 2-3 mi (3.2-4.6 kg) of riverbank, and they provide convenient stratigraphic

markers. The Mecca Quarry is a very resistant, slaty, fissile "paper shale." This is a prominent

ledge former that can generally be tentatively identified even in distant exposures.

The Francis Creek Shale is a unit well-known worldwide as the source of one of the best "Lager-

staten" fossil assemblages in the world. Farther east, in the Mazon Creek drainage basin, abundant
siderite concretions have been collected by generations of paleontologists as well as amateur
fossil collectors. As huge quantities of the shale were stripped away to provide access to the

underlying Colchester Coal during the middle decades of the twentieth century, diverse assem-
blages of both terrestrial plant and animal fossils (the "Braidwood flora") as well as marine
animals (the "Essex fauna") were described from the shale, and much of our knowledge of

Pennsylvanian life comes from this member. However, the unique set of depositional and diagenetic

factors that led to the preservation of the Mazon Creek Biota do not appear to have prevailed in

this area, and although siderite concretions do occur along the Vermilion river, they rarely

contain fossils.

Overlying the Francis Creek Shale, the Mecca Quarry is considered to be the "core shale" of the

Tonica Cyclothem, representing anoxic deposition in deep waters at the maximum transgression.

The thick shale overlying the Mecca Quarry is called the Oak Grove Limestone Member by Smith et

al. (1970), although limestone is a minor part of the unit. It is found as discontinuous layers of

flattened pods and septarian nodules within the dominant dark gray sandy shale lithology. The
Oak Grove is the regressive phase of the cyclothem and is topped by an unconformity and the

thin Lowell coal at the base of the Lowell Cyclothem.

Units above the Tonica and Lowell Cyclothems are also well exposed here, but access is difficult

and dangerous on the steep slopes. Most of the higher units can be examined more conven-

iently at other sites further downstream (particularly at Stop 2, Mile 2.6), and "binocular geology"

is generally the most prudent way to examine these units here. Approaching the west end of the

outcrop, where the river rounds a bend to the right, a trickling waterfall spills over a resistant bed

at the base of the Lowell Cyclothem. Sharp eyes (or less-sharp eyes aided by binoculars) can

sometimes locate the Lowell Coal in the creek bed near the lip of the falls.

Immediately downstream from the waterfall bend, a large area of slumped material is encountered

on the left bank. In early spring or late fall, when foliage is not present, the scarp can be seen

clearly from this vantage point in the light tan Vermilionville Sandstone and loess that tops the

bluff. The toe of the slump has forced the river to bend sharply to the east, and several large

boulders of sandstone line the left bank at this point. This slump is not evident on the topographic

base map (surveyed in 1909) used by Cady in his 1919 geologic map of the area (Cady, 1919),

which shows a straight stretch of river flowing past a very steep, east-facing escarpment (fig. 4-3).

However, the topographic map prepared in 1966 shows a much more gentle slope in the area
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Description of strata exposed at Stop 1

1

.

Sandstone, brownish gray, thin bedded; interbedded with sandy shale; contains

many black carbonaceous partings.

2. Sandstone, brown, fine-grained, poorly sorted, occurring in one massive bed.

3. Shale, gray, lower part fossiliferous (gastropods); contains layers of discoid,

septarian, fossiliferous ironstone concretions; grades into underlying shale.

4. Shale, black, well-bedded, hard, slatey; contains thin phosphatic lenses

and laminae, especially in lower part; occasional gray limestone nodules up
to 2.5 cm thick; contains Avicuopeten in lower part.

5. Shale, black, very calcitic and fossiliferous; Marginifera and crinoid debris; pyritic.

6. Conglomerate, composed of poorly sorted, fine-grained limestone particles

(up to 12 mm) in a pyritic matrix; fossiliferous.

7. Claystone, medium dark gray, becoming lighter in color downward with some
mottling; reddish in lower 25 cm; contains irregular calcite masses up to

2.5 cm thick in bottom 50 cm; calcite throughout.

8. Shale, light gray, fossiliferous, as below; contains several

lenticular limestone units up to 7.6 cm thick.

9. Limestone, light greenish gray, impure; nodular in lower part; fossiliferous

with abundant productids and crinoid stems.

10. Shale, medium gray, slightly green.

11. Shale, medium dark gray, mottled with greenish gray; interbedded with

medium gray, thinly laminated siltstone beds up to 7.6 cm thick.

1 2. Shale, black, smooth, well laminated, relatively soft, coaly in parts.

13. Claystone, medium olive-gray; relatively firm and calcitic, especially in

lower 1 .2 m; a few small slickensided surfaces.

15. Claystone, light greenish gray, yellow cast; silty, noncalcareous; contains

sandy limestone nodules up to 5.5 cm thick in the lower 20 cm.

16. Limestone, light greenish gray, sandy, clayey, massive.

17. Sandstone, light greenish gray, fine-grained, calcitic, clayey, thin bedded.

18. Shale, light greenish gray, fine, micaceous, sandy near top; contains small

nodules of sandy gray limestone which weather rusty; contains a 20-cm
mottled, soft, red and green shale 0.3 m from base; interval mostly covered.

19. Limestone, light gray, weathers reddish in part, septarian; fossiliferous;

Marginifera (abundant), Mesolobus, Ambocoelia; forms a consistent nodular bed.

20. Shale, medium gray, weathers tan, soft, slightly fossiliferous; contains several

siderite nodules in lower part; contains an 18-cm zone of light olive-gray,

lithographic septarian limestone nodules 0.7 m from base; basal 35 cm
poorly bedded.

21

.

Shale, dark gray; fossiliferous; Mesolobus, Marginifera, Neospirifer.

22. Coal, contains several dull shaly bands.

23. Siltstones, medium dark gray, sandy, calcitic, micaceous; contains vertical

plant impressions and charcoal streaks.

24. Shale, dark gray, sandy, micaceous, generally thicK bedded; contains two
prominent zones of lenticular, semilithographic septarian limestones up to

0.5 m thick and containing a few fossils; several thinner and less persistant

nodular limestone zones also present; a few crinoid stem fragments noted

near base.

25. Shale, black, hard, slaty; contains large discoidal concretions of dark gray

limestone up to 15 cm thick, mostly in lower 0.3 m.

26. Shale, light gray, soft, thin bedded; contains a few sideritic concretions;

generally not exposed.

27. Coal, has been mined out locally.

28. Claystone, gray, noncalcareous; where thicker than 2 m, commonly consists

of three beds; lower gray claystone, thin discontinuous green claystone or

shale, and upper gray claystone.

29. Dolostone.
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Figure 4-2. Stratigraphic column of the Lowell site

(after Smith et al., 1970).
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Figure 4-3. Topographic maps showing the apparent changes in the river course between the 1909 and
1965 surveys. The 1909 survey (1 :62,500) is shown on the left; the 1965 survey (1:24,000) is on the right.

Both maps are magnified to approximately the same scale. Top, area around Mile 0.5; bottom, bend at

Mile 1.6.
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and a sharp bend in the river as the

channel was displaced eastward

by the slide. Because of the low

competence of the shales that

dominate the north-facing slope at

this site, it seems likely that a simi-

lar slide could occur on this slope

in the coming decades as the river

continues to oversteepen the bank.

Mile 0.75 (Kilometer 1.2)

As the river bends west again after

rounding the slump block, a spec-

tacular bluff comes into view on

the left. From a distance, many of

the units from the Lowell stratigraphic

section (discussed at Stop 1 ) are

visible (fig. 4-4), from the Vermilion-

ville Sandstone and Canton Shale

at the top to the familiar Colchester

Coal, Francis Creek Shale, Mecca
Quarry Shale triad at the base. The
Colchester Coal is well exposed

here, and in low water conditions

its underclay can be examined (fig.

4-5). The unconformable contact

with the Galena-Platteville Forma-

tion is in the riverbed here, and

some low outcrops of the Galena-

Platteville are visible along the east

bank. The Moline Consumers Com-
pany Vermilion Quarry lies a short

distance beyond the east bank.

Figure 4-4. Photograph of the river bluff at Mile 0.75. Note the

light-colored Vermilionville Sandstone at the top and Mecca Quarry

Shale about one-fourth of the way up the slope from the river.

Near the downstream end of this exposure is a large block of Mecca Quarry shale that is domi-

nated by a cluster of large (0.5 m or larger) limestone nodules. These nodules appear light tan

on weathered surfaces, but fresh surfaces are black.

Mile 1.1 (Kilometer 1.8)

A small island divides the river here, with riffles in both channels. At the entrance to the west

channel, the Francis Creek and Mecca Quarry Shales are exposed in a cut bank; the east

channel flows over a knobby outcrop of Galena-Platteville Dolomite. This outcrop forces an

abrupt bend in the stream, and, in extremely low water conditions, some water flows through

small caverns in the outcrop. The upper 20 to 50 cm of rock is much more resistant than the under-

lying material, and much of this softer material has been dissolved or abraded away to form
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Figure 4-5. Photograph of rafters observing Colchester Coal at Mile 0.75.

low passageways under the surface crust. The surface of this outcrop is very hummocky
and irregular and resembles the exhumed Pennsylvanian erosion surface exposed in the Starved

Rock Clay Products Quarry located approximately 4 mi (6.4 km) to the northeast.

Mile 1.6 (Kilometer 2.6)

The river has deeply undercut the Vermilionville Sandstone at this point as the channel bends

abruptly to the east (fig. 4-6). Exercise caution at this point during high water, as the current tends

to rapidly sweep a raft under the low overhang. Trough cross-bedding is nicely exposed in this

dramatic cliff outcrop, and the basal contact between the Vermilionville and the underlying

Canton Shale can be followed up the slope to the east.

Approaching this site, the Vermilionville can be seen through a thin screen of trees along the

right (east) bank. The river is flowing through the most steeply dipping portion of the southwest-

ern limb of the La Salle Anticline at this point, and, as the river bends to the west, the sandstone

drops rapidly in elevation. The contact between the Vermilionville and the Canton dips beneath

the river near the beginning of the steep bluff, but in low water some interesting loading structures

can be seen here. The thickness of the sandstone at this site (approximately 10 m) and the

abundant trough cross-bedding suggest that it is a channel deposit.

This site reveals a substantial change in the river morphology since the 1909 topographic map.

The earlier map shows a very gentle curve to the west, but the 1965 map shows a much more

pronounced S-curve (fig. 4-3). This curve has become more pronounced as the soft shale on
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Figure 4-6. Photograph of undercut Vermilionville Sandstone at Mile 1 .6.

the east has been cut back while the harder sandstone has proved to be more resistant. Where
the shale lies vertically beneath the sandstone, undercutting has been extreme.

Mile 2.2 (Kilometer 3.5)

A coal seam can be seen along the left bank at this locality. The coal is about 1 .4 m thick, and

there is a gray limestone unit 1 m beneath the base. These are probably the Danville (No. 7)

Coal and the Brereton Limestone of the Shelbum Formation.

Up until Mile 2, the river has been flowing basically west or northwest and up-section. After that

point, the river bends to the north and then northeast, back down-section. This site is a few

meters above the Vermilionville Sandstone. In low water, some outcrops of the sandstone can

usually be seen along the banks or in the streambed a short distance downstream from the site.

Mile 2.6 (Kilometer 4.2)

A prominent syncline can be seen in the bluff along the right bank here in a ledge of black slatey

shale (fig. 4-7). As usual, the most interesting geology tends to be located at some of the worst

landing sites. The best areas are usually located between the axis of the fold and the bed of

gray sandstone that angles up from the northern limb, although at some water levels rafts can

be landed at the upstream limb of the fold. A stratigraphic column of this section is provided as

figure 4-8.

Stop 2: Syncline in Steep Cutbank near the Southern Boundary of Matthiesson

State Park Two small tributaries join the river here, one just above the site and one below.

Between the two stream mouths, a prominent bluff displays a spectacular syncline. The axis
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Figure 4-7. Photograph of syncline at Stop 2 (Mile 2.6). Prominent ledge is a resistant "slatey" shale near

the base of Canton Shale.

of the syncline trends roughly east-west, and the limbs dip at angles of up to 15°. Units exposed

at this locality are shown in figure 4-8. The Pleasantview Sandstone forms a ledge that angles

up from the river near the north end of the outcrop. The overlying Excello Shale contains abun-

dant large crinoid columnal sections in a zone just below the top of the unit. The Hanover Shale

contains crinoid debris as well, and the upper surface of the limestone is in many places covered

with a layer of brachiopods. Above the Hanover, the thin but distinctive Covel Conglomerate can

be found, consisting of rounded black phosphatic pellets surrounded by pyrite. The prominent

black shale that defines the syncline lies just above the Covel; the remainder of the outcrop con-

sists of gray to brown Canton Shale.

This area provides excellent opportunities to investigate lithologic units that were visible but

inaccessible at site 2. In addition to the river bluff syncline, these units can be viewed in either

of the creekbeds that lead into the uplands north and south of the bluff. The northernmost creek

has cut through the Pennsylvanian and has carved a narrow gorge into the underlying Galena-

Platteville Dolomite. Walking up through the creekbed, exposures of Mecca Quarry Shale and

Colchester Coal can be observed near the Ordovician unconformity. Many small-scale folds are

evident in these exposures. The land along the right bank in this area is within the boundaries of

Matthiesson State Park.
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Description of strata exposed at Stop 2

Top of section

1

.

4.0 m Canton Shale: Shale, soft, gray to tan;

weathered pyrite nodules.

2. 0.7 m Calcareous gray shale with discontinuous
strata of flattened micrite nodules.

3. 0.7 m Black shale, relatively soft.

4. 0.35 m Black shale, very hard, "slaty," and fissile;

prominent ledge former.

5. 0.2 m Soft gray shale.

6. 1 .0-3.0 cm Covel Creek Conglomerate: Con-
glomerate, rounded limestone and phosphate
particles in pyrite matrix.

7. 0.6 m Soft gray shale.

8. 0.5 m Hanover Limestone: Massive limestone
with productid brachiopods and crinoid columnals.

Top of unit is shell lag deposit of productids.

9. 0.5 m Brown shale. Lower is very soft; upper
0.2 m is much harder. Lag deposit of large (dia-

meters up to 17 mm) crinoid columnals at top.

Articulated segments 2-5 cm are common.

10. 1 .5 m Excello Shale: Silty shale, very hard, mm
scale black and gray laminations.

11. 3.0 m Covered.

12. 1 .0 m Shale, lower is gray; upper grades to

nearly black.

13. 0.0-0.4 m Breezy Hill Limestone: Discontinuous
nodular limestone, gray, argillaceous.

14. .4 m Gray shale, very silty.

15. 1.1m Pleasantview Sandstone: Argillaceous,

micaceous, thin-bedded and fissile. Gray to light

tan. Upper surface has prominent, nodular limonite-

stained corrosion surface.

Mile 3.0 (Kilometer 4.8)

Figure 4-8. Stratigraphic column of the bluff at Mile 2.6

(Stop 2).

In a small exposure on the left bank, the Colchester Coal, Francis Creek Shale, and Mecca
Quarry Shale can be seen. Participants are traveling down-section, and Galena-Platteville

Dolomite dipping at 20° to the southwest is exposed in the riverbed on the right bank a short

distance downstream. The exposure is near a wooden truss trail bridge that spans a small gully.

This locality is at nearly the same stratigraphic level as at the start of the trip.

Mile 3.3 (Kilometer 5.3)

High bluffs line the right bank of the river for more than 0.25 mi (0.4 km) at this point, with Vermilion-

ville Sandstone forming the upper half of the cliff and Canton Shale forming most of the lower

section (fig. 4-9). The contact between the two units is plainly visible through most of the exposure,

and many seeps of water can be seen where the Vermilionville aquifer lies perched above the

shale. This contact moves to lower elevations as the river flows up-section to the west.
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Figure 4-9. Photograph of the Vermilionville Sandstone and Canton Shale at Mile 3.3.

Mile 3.9 (Kilometer 6.3)

Wildcat Rapids A long, south-trending straight reach of river, followed by an abrupt bend to the

right, marks the approach to Wildcat Rapids. Wildcat Rapids is located where a barrier of mas-

sive boulders of La Salle Limestone partially blocks the river channel (fig. 4-10). At medium to

high water levels, the standing waves are sufficient to easily swamp an open canoe, and even

rafts will generally take on a moderate amount of water. Depending on water levels, this barrier

can create a drop of from 1 to 3 m in the water surface. Below this drop, the river is basically

straight and deep, and hydraulic turbulence from the main drop is the primary safety concern.

The right bank is usually considered the best for scouting the rapids, and a well-worn trail leads

through the poison ivy-lined banks. Numerous scouting and photographic vantage points can

usually be found along this trail. Many rafters opt at this point to carry moisture-sensitive items

(e.g., cameras) around the rapids and cache them on the boulders below the drop. Field trip

participants who feel apprehensive about the prospect of a close encounter with low temperature,

upper flow regime fluid may also avail themselves of the opportunity to walk around the rapids.

Mile 4.1 (Kilometer 6.6)

Stop 3: Former Site of Bailey Falls Up until a few decades ago, Bailey Creek tumbled over

this ledge of Hall Limestone in a very scenic waterfall. The tale of Bailey Falls is recounted in the

accompanying story by Bill Shields. The bedrock in this area belongs to the Modesto and Bond

Formations and consists mostly of limestone; coal and shale occupy greatly diminished portions

of the section. This region is well-known among conodont workers for its well-documented conodont
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Figure 4-10. Photograph of rafters negotiating Wildcat Rapids

assemblages (Collinson et al., 1972) and among fossil collectors for the Pennsylvanian marine

fossils (especially shark teeth) that have been found in the nearby quarries. The quarry to the

south and west is an impressive sight, and it is interesting to look out over the massive excavation

and think about the links between this quarry and the Chicago Metropolitan area. As one of the

high-quality limestone sources closest to Chicago, a great deal of the La Salle Limestone and

other nearby units has been quarried, mixed with clay, fired, and shipped off to the city in the form

of portland cement. As the buildings and infrastructure of northeastern Illinois went up, much of

this area was going down.

Mile 4.3 (Kilometer 6.9)

Mouth of Bailey Creek.

Mile 4.8 (Kilometer 7.7)

Lone Star Quarry Road crosses the river on an old steel bridge.

Mile 5.9 (Kilometer 9.5)

Lone Star Industries Cement Plant and Dam As the impressive sight of the huge cement

plant looms on the left bank, watch for the sign hanging from a cable that warns of the approaching
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dam. A steel and concrete retaining wall lines the left bank near the plant, and the group will

land on the right bank above the dam. At the southeast end of the dam a spur of concrete projects

out and acts as a chute. At certain water levels it is possible to run this chute, but in most instances it

is safer to line the unmanned rafts through the opening. The remainder of the dam forms a shear

drop with a backroller and is extremely dangerous. If canoeists attempt to run the concrete spur

but hit it a little to far to the left, they could become trapped in the backroller. Fatalities have
occurred at this dam, and it should be treated with great respect.

Mile 6.1 (Kilometer 9.8)

Approaching the bridge, note the cement "lava flows" and the retaining wall made of cement
"pillow lavas." Below the bridge, there is usually a bit of fast water, the last Whitewater of the trip.

Mile 6.7 (Kilometer 10.8)

Two coals are visible on the right bank, just before the power lines. There is little or no exposed
rock above or below the coals.

Mile 7.1 (Kilometer 11.4)

Stop 4: Mouth of Deer Creek, Matthiesson State Park The mouth of Deer Creek is one
of the most visited and photographed geologic sites in northern Illinois, and a picture of these

dipping strata adorns the cover of ISGS Circular 502, The Galena and Platteville Groups of

Northern Illinois (Willman and Kolata, 1978). The outcrops in the streambank and streambed

dip to the southwest at 28 to 30°, providing some of the more dramatic structures that can be

found in the largely horizontal strata of the Prairie State. Two creeks enter the Vermilion here, a

small steep one coming in from the southeast, and a larger one flowing in through a gorge to the

northeast. The larger gorge is the scenic centerpiece of Matthiesson State Park and is well worth

the hike necessary to investigate it. East from the Vermilion River, Galena-Platteville strata gain

elevation rapidly and soon disappear under a cover of Pennsylvanian strata and Quaternary

deposits (fig. 4-11). In the valley of Deer Creek, spectacular cliffs of St. Peter Sandstone frame

the canyon and lead to a spectacular waterfall and deep plunge basin. Although an inspection of

the map and basic geomorphic intuition would suggest that the easiest route up the canyon would

be to follow the creek up from its junction with the Vermilion, this route contains some obstacles

that make an upland hike the preferred course. Much of the land in the lower part of the creek

valley is subject to a great deal of groundwater discharge, producing deep, low viscosity mud
even during periods of drought.

The canyon of Deer Creek appears to have formed as a knickpoint migrated up the valley after

base level lowering that occurred during the Pleistocene. However, groundwater sapping may
also be playing a role in the formation of this canyon and similar ones in Starved Rock State Park.

Similar box canyons in porous sandstones in Florida (Schumm et al., 1995) and Egypt (Luo et

al., 1997) have been attributed to the sapping process. Much of the undercutting that is present

below Cascade Falls may be the result of the continued seepage of groundwater through the

sandstone. Many of the upland areas above the canyon are underlain by the Colchester Coal,

which gives this water a rather high sulfur content and a relatively low pH. The cement in the
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Figure 4-11. Geologic map and cross section of part of Matthiesson State Park (from

Nelson and Malone, 1997).

St. Peter Sandstone is weak and largely calcareous, so that this seepage has weakened the

lower strata and allowed for the large degree of undercutting. This action, coupled with stream

abrasion, has produced some interesting caves near the base of the falls.
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Mile 7.9 (Kilometer 12.7)

End of trip. Take out on the right bank and climb out of the gorge. As you trudge up the long hill

to the road, you might muse upon the fact that when you started the trip, the river was at an ele-

vation of about 505 ft (154 m) above sea level. At the bridge, the river elevation is approximately

445 ft (136 m) for a total drop of 60 ft (18 m) in almost 8 mi, or 7.5 ft/mi (1 .8 m/km). The road

shoulder where the vans are parked is around 500 ft again, and a long hike is needed to travel

back up the same 60 ft the group descended so easily in the rafts!

REFERENCES

Cady, Gilbert H., 1919, Geology and resources of the Hennepin and LaSalle Quadrangles: Illinois State Geological

Survey Bulletin No. 37, 136 p.

Collinson, C., Avcin, M.J., Norby, R.D., and Merrill, G.K., 1972, Pennsylvanian conodont assemblages from La Salle

County, Northern Illinois: Illinois State Geological Survey Guidebook 10, 37 p.

Luo, W., Arvidson, R.E., Sultan, M., Becker, R., Crombie, M.K., Sturchio, N, and El Alfly, Z., 1997, Ground water

sapping processes, Western Desert, Egypt: Geological Society of America Bulletin, January 1997, v. 109,

no.1, p 43-62.

Nelson, R.S., and Malone, D.H., 1997, Stratigraphy and economic geology of the LaSalle-Ottawa, Illinois area:

Guidebook for the 60
th

Annual Tri-State Geological Field Conference, Illinois State University, Normal, IL.

Nelson, R.S., Malone, D.H., Jacobson, R.J., and Frankie, W.T., 1996, Guide to the geology of Buffalo Rock and
Matthiesson State Parks area, LaSalle County, Illinois: Illinois State Geological Survey Field Trip

Guidebook 1996C.

Nelson, W.J, 1995, Structural features of Illinois: Illinois State Geological Survey Bulletin 100, 144 p.

Schumm, S.A., Boyd, K.F., Wolf, C.G., and Spitz, W.J., 1995, A groundwater sapping landscape in the Florida

Panhandle: Geomorphology, v. 12, p. 281-297

Smith, W.H., Nance, R.B., Hopkins, M.E., Johnson, R.G., and Shabica, C.W., 1970, Depositional environments in

parts of the Carbondale Formation, western and northern Illinois: Illinois State Geological Survey Guidebook

Series No. 8, 119 p.

Trask, C.B., 1987, Cyclothems in the Carbondale Formation (Pennsylvanian: Desmoinesian Series) of La Salle

County, Illinois: Geological Society of America Centennial Field Guide Series, North Central Section, p. 221-225.

Willman, H.B., and Kolata, D.R., 1978, The Platteville and Galena groups in Northern Illinois: Illinois State Geologic

Survey Circular 502, 75 p.

THE TALE OF BAILEY FALLS

—Bill Shields, Illinois State University and Illinois Department

of Transportation, Ottawa, Illinois

Bailey Falls served as a local picnic area, car wash, and weekend retreat during the early and
middle 1900s (fig. 4-12). Families and friends gathered around this communal watering hole to

wile away the hot summer days, enjoying the grand stream-fed waterfall and strolling along the
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Figure 4-12. Bailey Falls.

scenic wooded river walks. Local seniors recall seeing dozens of families picnicking around the

shelters or driving their Model T Fords atop the falls for a free wash. By all accounts, it was an

alluring setting that is remembered fondly by residents of the surrounding communities.

According to an article in the local paper authored by John Barron, Bailey's Falls was named for

Gus Bailey's parents, who were thought to be the first settlers in the area, having arrived in

1825. Gus, the son of this pioneer family, spent his boyhood near Bailey Falls where his only

playmates were Native American children. His family lived on the land until he was 19 years

old. It was at this time the Bailey's sold the land to Major G.M. Nelson.

Details pertaining to Major Nelson and his use of the land are unknown, but the story picks up

again in 1917. In an essay written by Thomas Trump, a local gentleman, the Bailey Falls property

was owned in 1917 by the Bent brothers, who were instrumental in the development of the local

community. Centering around a thriving coal mining business, the brothers developed residential

subdivisions, built stores, and provided the necessities of life that the mining community needed.

Among their assets was the Bailey Falls area, which was used as a dairy farm.

As the Bent brothers harvested the bounty of the Pennsylvanian age Herrin (No. 6), Springfield

(No. 5), and Colchester (No. 2) Coals, the Marquette Cement Company was doing the same to

the La Salle Limestone, which was adjacent to and above the Bent's operation. It is not clear who
threw the first stone, so to speak, but accusations flew, and lawsuits were filed over whose
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blasting was endangering whose tunnels. In the end, Marquette Cement acquired Bailey Falls,

and the Bent Company was out of business.

In 1932, Bailey Falls was donated to Vermilion Township, and the area was opened to the com-
munity for picnics, camping, and swimming. In 1967, Marquette Cement Company bought the

land from the township and maintained the recreational area.

In 1974, the cement company was given the mineral rights to the property and began a strip

mining operation. In order to quarry the limestone at depths below that of Bailey Creek, the falls

had to be destroyed. Knowing this would not be popular among the locals, Marquette Cement
Company vowed to restore the falls to their original splendor when the quarry was closed.

Around 1 984, during an exceptionally wet spring, Bailey Creek eroded down through the quarry's

limestone floor and some fifteen feet of underlying shale, changing the creek's direction of flow

and the location of its discharge into the Vermilion River. The new mouth of Bailey Creek can be

seen several hundred feet downstream from its original location.

The quarry through which Bailey Falls runs has long been abandoned. The property presently

belongs to Lone Star Industries. The falls were never restored, and nature is reclaiming the area

in a most spectacular way. Beavers have constructed several dams, flooding acres of quarry floor,

which accommodates migratory waterfowl. Herds of white-tailed deer graze the acres of higher

flatlands, and red-tailed hawks circle above. Mother Nature has even created a new waterfall on

Bailey Creek about a mile upstream from the old one. Although the land is not open to the public,

locals still remark about the beauty of Bailey Falls and the surrounding area.

GEOLOGIC HISTORY OF THE AREA:
INTERPRETING THE ENVIRONMENTS OF DEPOSITION

—Mike Phillips, llinois Valley Community College

One enjoyable aspect of geology is examining rocks and trying to imagine the environment in which

they were deposited. A rationale for wanting to understand the environment of deposition (EOD)

is illustrated by the often heard phrase, "the present is the key to the past." To interpret the EOD,
the deposit and its fossils are compared with modern environments to locate a "best fit." This

process sounds simple, but the geologist must account for the many changes in life, global

climate, atmospheric composition, and even the tidal cycle. Therefore, the area of EOD interpre-

tation needs to be entered carefully and with an open mind.

These formations are encountered along the Vermilion River:

• Ordovician Galena-Platteville Formation

• Pennsylvanian Carbondale Formation (cyclothems)

• Ordovician St. Peter Sandstone
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Galena-Platteville Formation

The first of these formations encountered along the field trip route is the Galena-Platteville

Formation. The interpretation begins by describing the lithology and any fossils found:

The rock is limestone with flat to wavy bedding and abundant bioturbation. There are many marine fossils

including brachiopods and Receptaculites, a colonial organism (currently interpreted as an algae). The beds
vary from thin to thick bedded. The limestone unit is up to 1 16 m (380 ft) thick in the field trip area.

These observations indicate much about the EOD, including its stability.

Limestone is deposited primarily in marine environments, specifically, on the continental shelf, away from

sources of clastic sediments (such as sand, silt, and clay). The presence of abundant fossil life indicates

relatively shallow water (especially true if Recepticulites is indeed an algae). The overall thickness of the

limestone indicates an environment that was relatively stable for millions of years.

Carbondale Formation

The Carbondale Formation is very different. It comprises thin beds of widely varying composition.

Early researchers recognized that these beds occur in repeating sequences, which provide an

excellent, compact illustration of several EODs. Several are noted here:

• The base of the sequence is marked by a "dirty" sandstone with an uneven lower surface that cuts into

the underlying strata. The sandstone is thickly to thinly bedded, may be cross-bedded, and is commonly
interbedded with thin layers of clay near the top. This layer is interpreted as river sands deposited in

channels eroded into the underlying strata. In places, thin layers of clay show rhythmic changes in

thickness that can be associated with tidal cycles.

• The fourth and fifth members of the sequence (counting from the bottom) are claystone overlain by coal.

The clay is interpreted as the soil on which the coal swamp grew. Modern coal-forming environments are

found primarily in tropical to sub-tropical regions. The most difficult aspect of interpreting the ancient

climate is the difference in vegetation. Pennsylvanian coal swamps were filled with tree-size relatives of

modern club mosses, scouring rushes, ferns, and now-extinct groups; modern coal-forming swamps
contain mostly conifers and flowering plants.

• The seventh and ninth members are limestones with abundant marine fossils, and the eighth member is

a black, slaty shale, which also contains some marine fossils. As mentioned, the limestones represent a

shallow marine environment. The black shale is a deeper marine deposit, and the black color is related to

the low-oxygen conditions found below the photic zone where photosynthesis occurs.

Together, these layers (and the intervening ones not described) represent a constantly changing

environment (in geologic terms) that indicates frequent changes in sea level. Geologists are

faced with the challenge of providing a reasonable explanation for all of those sea level changes.

Explanations have ranged from changing lobes of a large delta system to fluctuations in sea-floor

spreading rates to glacial advances and retreats.

St. Peter Sandstone

The St. Peter Sandstone shows a third type of environment. The St. Peter is a very clean sand

with "frosted" sand grains and contains no fossils in our area. Its layers are thickly to thinly

bedded with some cross-bedding.
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The lack of fossils makes the task of interpretation somewhat difficult. However, this problem with sandstones

is common because they are deposited in higher energy environments. Cross-beds are commonly found in

wind-blown sand, but may be found in other environments. The cleanness of the sand indicates that this is

probably not a river deposit. The St. Peter is interpreted as a marine sand based on some marine fossils found

in other exposures of the formation. The cross-beds could be indications of aerial exposure along a beach,

where sea breezes blow exposed sand in to dunes.

These examples merely "scratch the surface" of possibilities in the interpretation of environments

of deposition. The most exciting aspect of this method for teaching applications is the progression

from observation to hypothesis to testing of conclusions. The comparison of sedimentary rocks

(and fossils) to modern environments is the core of historical geology.

116






